James Butcher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5769877/publications.pdf

Version: 2024-02-01

331670 315739 2,139 41 21 38 h-index citations g-index papers 43 43 43 3157 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Maternal Diet and Infant Feeding Practices Are Associated with Variation in the Human Milk Microbiota at 3 Months Postpartum in a Cohort of Women with High Rates of Gestational Glucose Intolerance. Journal of Nutrition, 2021, 151, 320-329.	2.9	24
2	Examining the Effects of an Anti-Salmonella Bacteriophage Preparation, BAFASAL®, on Ex-Vivo Human Gut Microbiome Composition and Function Using a Multi-Omics Approach. Viruses, 2021, 13, 1734.	3.3	5
3	Oligosaccharides and Microbiota in Human Milk Are Interrelated at 3 Months Postpartum in a Cohort of Women with a High Prevalence of Gestational Impaired Glucose Tolerance. Journal of Nutrition, 2021, 151, 3431-3441.	2.9	10
4	Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress. Viruses, 2021, 13, 1955.	3.3	4
5	The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus. Communications Biology, 2020, 3, 2.	4.4	26
6	Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterology and Motility, 2020, 32, e13773.	3.0	O
7	Examining the relationship between maternal body size, gestational glucose tolerance status, mode of delivery and ethnicity on human milk microbiota at three months post-partum. BMC Microbiology, 2020, 20, 219.	3.3	20
8	Virome Sequencing of the Human Intestinal Mucosal–Luminal Interface. Frontiers in Cellular and Infection Microbiology, 2020, 10, 582187.	3.9	14
9	Mothers of Preterm Infants Have Individualized Breast Milk Microbiota that Changes Temporally Based on Maternal Characteristics. Cell Host and Microbe, 2020, 28, 669-682.e4.	11.0	31
10	Bovine Lactoferrin Supplementation Does Not Disrupt Microbiota Development in Preterm Infants Receiving Probiotics. Journal of Pediatric Gastroenterology and Nutrition, 2020, 71, 216-222.	1.8	5
11	Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans. Frontiers in Microbiology, 2020, 11, 397.	3.5	14
12	The impact of probiotics and lactoferrin supplementation on piglet gastrointestinal microbial communities. BioMetals, 2019, 32, 533-543.	4.1	18
13	The mucosal–luminal interface: an ideal sample to study the mucosa-associated microbiota and the intestinal microbial biogeography. Pediatric Research, 2019, 85, 895-903.	2.3	32
14	Advancing functional and translational microbiome research using meta-omics approaches. Microbiome, 2019, 7, 154.	11.1	177
15	Independent of Birth Mode or Gestational Age, Very-Low-Birth-Weight Infants Fed Their Mothers' Milk Rapidly Develop Personalized Microbiotas Low in Bifidobacterium. Journal of Nutrition, 2018, 148, 326-335.	2.9	22
16	Evaluating in Vitro Culture Medium of Gut Microbiome with Orthogonal Experimental Design and a Metaproteomics Approach. Journal of Proteome Research, 2018, 17, 154-163.	3.7	41
17	Methods and Strategies to Examine the Human Breastmilk Microbiome. Methods in Molecular Biology, 2018, 1849, 63-86.	0.9	15
18	Crystal structure of <i>Campylobacter jejuni</i> peroxide regulator. FEBS Letters, 2018, 592, 2351-2360.	2.8	6

#	Article	IF	CITATIONS
19	Variation on a theme: investigating the structural repertoires used by ferric uptake regulators to control gene expression. BioMetals, 2018, 31, 681-704.	4.1	27
20	Transcriptomic Analysis of the Campylobacter jejuni Response to T4-Like Phage NCTC 12673 Infection. Viruses, 2018, 10, 332.	3.3	46
21	Disruption of maternal gut microbiota during gestation alters offspring microbiota and immunity. Microbiome, 2018, 6, 124.	11.1	109
22	Metaproteomics reveals associations between microbiome and intestinal extracellular vesicle proteins in pediatric inflammatory bowel disease. Nature Communications, 2018, 9, 2873.	12.8	209
23	Functional insights into the interplay between DNA interaction and metal coordination in ferric uptake regulators. Scientific Reports, 2018, 8, 7140.	3.3	13
24	NuA4 Lysine Acetyltransferase Complex Contributes to Phospholipid Homeostasis in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2017, 7, 1799-1809.	1.8	7
25	Analyzing Prokaryotic RNA-Seq Data: A Case Study Identifying Holo-Fur Regulated Genes in Campylobacter jejuni. Methods in Molecular Biology, 2017, 1512, 245-256.	0.9	0
26	Mucosa-Associated Ileal Microbiota in New-Onset Pediatric Crohn $\hat{E}^{1}\!\!/4$ s Disease. Inflammatory Bowel Diseases, 2016, 22, 1533-1539.	1.9	43
27	Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization. Microbiology Spectrum, 2016, 4, .	3.0	25
28	Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn's disease. Nature Communications, 2016, 7, 13419.	12.8	326
29	<i>In Vitro</i> Metabolic Labeling of Intestinal Microbiota for Quantitative Metaproteomics. Analytical Chemistry, 2016, 88, 6120-6125.	6.5	40
30	MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota. Microbiome, 2016, 4, 31.	11.1	154
31	Functional Impacts of the Intestinal Microbiome in the Pathogenesis of Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 139-153.	1.9	112
32	Refined analysis of the Campylobacter jejuni iron-dependent/independent Fur- and PerR-transcriptomes. BMC Genomics, 2015, 16, 498.	2.8	49
33	Phenotypic Screening of a Targeted Mutant Library Reveals Campylobacter jejuni Defenses against Oxidative Stress. Infection and Immunity, 2014, 82, 2266-2275.	2.2	38
34	Campylobacter jejuni ferric–enterobactin receptor CfrA is TonB3 dependent and mediates iron acquisition from structurally different catechol siderophores. Metallomics, 2013, 5, 988.	2.4	32
35	The Transcriptional Landscape of Campylobacter jejuni under Iron Replete and Iron Limited Growth Conditions. PLoS ONE, 2013, 8, e79475.	2.5	39
36	Structure and regulon of <i>Campylobacter jejuni</i> ferric uptake regulator Fur define apo-Fur regulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10047-10052.	7.1	114

#	Article	IF	CITATIONS
37	Nutrient Acquisition and Metabolism by Campylobacter jejuni. Frontiers in Cellular and Infection Microbiology, 2012, 2, 5.	3.9	108
38	Use of a Rabbit Soft Tissue Chamber Model to Investigate Campylobacter Jejuni–Host Interactions. Frontiers in Microbiology, 2010, 1, 126.	3.5	12
39	Micromanaging Oligodendrocyte Differentiation by Noncoding RNA: Toward a Better Understanding of the Lineage Commitment Process. Journal of Neuroscience, 2009, 29, 5365-5366.	3.6	6
40	Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics, 2009, 10, 481.	2.8	144
41	Stress Responses, Adaptation, and Virulence of Bacterial Pathogens During Host Gastrointestinal Colonization., 0,, 385-411.		18