
Xinghao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel electrokinetic remediation with in-situ generation of H2O2 for soil PAHs removal. Journal of Hazardous Materials, 2022, 428, 128273.	12.4	16
2	Mechanistic Study of the Effects of Agricultural Amendments on Photochemical Processes in Paddy Water during Rice Growth. Environmental Science & Technology, 2022, 56, 4221-4230.	10.0	17
3	Oxytetracycline induced the redox of iron and promoted the oxidation of As(III). Science of the Total Environment, 2022, 828, 154381.	8.0	6
4	Persistent Free Radicals from Low-Molecular-Weight Organic Compounds Enhance Cross-Coupling Reactions and Toxicity of Anthracene on Amorphous Silica Surfaces under Light. Environmental Science & Technology, 2021, 55, 3716-3726.	10.0	27
5	Enhanced and selective phototransformation of chlorophene on aluminum hydroxide-humic complexes. Water Research, 2021, 193, 116904.	11.3	5
6	Two transformation pathways of Acetaminophen with Fe3+ saturated clay particles in dark or light. Chemosphere, 2021, 278, 130399.	8.2	10
7	Visible light and fulvic acid assisted generation of Mn(III) to oxidize bisphenol A: The effect of tetrabromobisphenol A. Water Research, 2020, 169, 115273.	11.3	42
8	Oxidative Oligomerization of Phenolic Endocrine Disrupting Chemicals Mediated by Mn(III)-L Complexes and the Role of Phenoxyl Radicals in the Enhanced Removal: Experimental and Theoretical Studies. Environmental Science & Technology, 2020, 54, 1573-1582.	10.0	31
9	Removal of 4-chlorophenol, bisphenol A and nonylphenol mixtures by aqueous chlorination and formation of coupling products. Chemical Engineering Journal, 2020, 402, 126140.	12.7	35
10	Photochemical behavior of benzophenone sunscreens induced by nitrate in aquatic environments. Water Research, 2019, 153, 178-186.	11.3	66
11	Formation of hydroxylated derivatives and coupling products from the photochemical transformation of polyfluorinated dibenzo-p-dioxins (PFDDs) on silica surfaces. Chemosphere, 2019, 231, 72-81.	8.2	5
12	Degradation of sulfadimethoxine by permanganate in aquatic environment: Influence factors, intermediate products and theoretical study. Science of the Total Environment, 2019, 671, 705-713.	8.0	36
13	Ozonation of pentabromophenol in aqueous basic medium: Kinetics, pathways, mechanism, dimerization and toxicity assessment. Chemosphere, 2019, 220, 546-555.	8.2	42
14	Photodegradation of polychlorinated diphenyl sulfides mediated by reactive oxygen species on silica gel. Chemical Engineering Journal, 2019, 359, 1056-1064.	12.7	27
15	Effective degradation of fenitrothion by zero-valent iron powder (FeO) activated persulfate in aqueous solution: Kinetic study and product identification. Chemical Engineering Journal, 2019, 358, 1479-1488.	12.7	108
16	Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism. Ecotoxicology and Environmental Safety, 2019, 170, 259-266.	6.0	64
17	Removal of the UV Filter Benzophenone-2 in Aqueous Solution by Ozonation: Kinetics, Intermediates, Pathways and Toxicity. Ozone: Science and Engineering, 2018, 40, 122-132.	2.5	18
18	Phototransformation of estrogens mediated by Mn(III), not by reactive oxygen species, in the presence of humic acids. Chemosphere, 2018, 201, 224-233.	8.2	41

XINGHAO WANG

#	Article	IF	CITATIONS
19	Enhanced Removal of Chlorophene and 17β-estradiol by Mn(III) in a Mixture Solution with Humic Acid: Investigation of Reaction Kinetics and Formation of Co-oligomerization Products. Environmental Science & Technology, 2018, 52, 13222-13230.	10.0	63
20	Photodegradation of 17β-estradiol on silica gel and natural soil by UV treatment. Environmental Pollution, 2018, 242, 1236-1244.	7.5	11
21	Degradation of aqueous 2,4,4′-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. Water Research, 2018, 143, 176-187.	11.3	165
22	The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: rate analysis and cyclic voltammetry. Scientific Reports, 2017, 7, 7756.	3.3	31
23	Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to <i>Daphnia magna</i> : The role of certain arsenic species. Environmental Toxicology and Chemistry, 2016, 35, 1852-1859.	4.3	24
24	Toxicity of Arsenic to <i>Photobacterium phosphoreum</i> , <i>Daphnia magna</i> , and <i>Danio rerio</i> at Different pH Levels. Clean - Soil, Air, Water, 2016, 44, 72-77.	1.1	7
25	Degradation of fluoroquinolone antibiotics by ferrate(VI): Effects of water constituents and oxidized products. Water Research, 2016, 103, 48-57.	11.3	206
26	Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. Environmental Pollution, 2016, 208, 732-738.	7.5	57
27	Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment. PLoS ONE, 2015, 10, e0139580.	2.5	49
28	Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions. Aquatic Toxicology, 2015, 164, 145-154.	4.0	25
29	Antioxidant status and Na+, K+-ATPase activity in freshwater fish Carassius auratus exposed to different combustion products of Nafion 117 membrane: an integrated biomarker approach. Environmental Science and Pollution Research, 2015, 22, 3408-3418.	5.3	6
30	Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. Aquatic Toxicology, 2015, 160, 142-150.	4.0	32
31	Oxidative Degradation of Decabromodiphenyl Ether (BDE 209) by Potassium Permanganate: Reaction Pathways, Kinetics, and Mechanisms Assisted by Density Functional Theory Calculations. Environmental Science & Technology, 2015, 49, 4209-4217.	10.0	90
32	Metal accumulation and oxidative stress biomarkers in liver of freshwater fish Carassius auratus following in vivo exposure to waterborne zinc under different pH values. Aquatic Toxicology, 2014, 150, 9-16.	4.0	113
33	Effect of water quality on mercury toxicity to Photobacterium phosphoreum: Model development and its application in natural waters. Ecotoxicology and Environmental Safety, 2014, 104, 231-238.	6.0	20
34	Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. Journal of Hazardous Materials, 2014, 275, 89-98.	12.4	77
35	Antioxidant responses in Carassius auratus and Lolium perenne exposed to the laboratory pollution. Environmental Toxicology and Pharmacology, 2014, 37, 536-542.	4.0	3
36	The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna) Tj ETQq0 0	0 rgBT /O [.] 6.0	verlock 10 Tf 51

36

3

83-90.

#	Article	IF	CITATIONS
37	Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. Journal of Hazardous Materials, 2013, 262, 288-296.	12.4	35