Markus Heyde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5769345/publications.pdf

Version: 2024-02-01

		117453	123241
111	4,007	34	61
papers	citations	h-index	g-index
118	118	118	3079
all docs	docs citations	times ranked	citing authors
un 4000	as to situitons	timoo rumou	orang admore

#	Article	IF	CITATIONS
1	Resolving atomic diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ru</mml:mi><mml:mrow><mml:r mathvariant="normal">O<mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mo>×</mml:mo><mi .<="" 105,="" 2022,="" b,="" high-speed="" microscopy.="" physical="" review="" scanning="" spiral="" td="" tunneling="" with=""><td>no}(ml:mn>2<</td><td>nl:mo><mml:n /mml:mn><m< td=""></m<></mml:n </td></mi></mml:r></mml:mrow></mml:mrow></mml:math>	no}(ml:mn>2<	nl:mo> <mml:n /mml:mn><m< td=""></m<></mml:n
2	Mesoscopic Structures and Coexisting Phases in Silica Films. Journal of Physical Chemistry C, 2022, 126, 3736-3742.	1.5	5
3	Growth of Nâ€Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): From Single Molecules to Magicâ€Number Islands. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
4	A high-speed variable-temperature ultrahigh vacuum scanning tunneling microscope with spiral scan capabilities. Review of Scientific Instruments, 2022, 93, .	0.6	4
5	Dynamics in the O(2 \tilde{A} — 1) adlayer on Ru(0001): bridging timescales from milliseconds to minutes by scanning tunneling microscopy. Physical Chemistry Chemical Physics, 2022, 24, 15265-15270.	1.3	3
6	Growth and Atomicâ€Scale Characterization of Ultrathin Silica and Germania Films: The Crucial Role of the Metal Support. Chemistry - A European Journal, 2021, 27, 1870-1885.	1.7	13
7	Frontispiece: Growth and Atomicâ€Scale Characterization of Ultrathin Silica and Germania Films: The Crucial Role of the Metal Support. Chemistry - A European Journal, 2021, 27, .	1.7	O
8	Development of a single crystal sample holder for interfacing ultrahigh vacuum and electrochemical experimentation. Review of Scientific Instruments, 2021, 92, 074104.	0.6	4
9	Continuous network structure of two-dimensional silica across a supporting metal step edge: An atomic scale study. Physical Review Materials, 2021, 5, .	0.9	6
10	Identifying Structure–Selectivity Correlations in the Electrochemical Reduction of CO ₂ : A Comparison of Wellâ€Ordered Atomically Clean and Chemically Etched Copper Singleâ€Crystal Surfaces. Angewandte Chemie - International Edition, 2021, 60, 19169-19175.	7.2	67
11	Spiral high-speed scanning tunneling microscopy: Tracking atomic diffusion on the millisecond timescale. Applied Physics Letters, 2021, 119, .	1.5	12
12	Structure of a Silica Thin Film on Oxidized Cu(111): Conservation of the Honeycomb Lattice and Role of the Interlayer. Journal of Physical Chemistry C, 2020, 124, 20942-20949.	1.5	9
13	A Silica Bilayer Supported on Ru(0001): Following the Crystallineâ€to Vitreous Transformation in Real Time with Spectroâ€microscopy. Angewandte Chemie, 2020, 132, 10674-10680.	1.6	4
14	Binding Behavior of Carbonmonoxide to Gold Atoms on Ag(001). Topics in Catalysis, 2020, 63, 1578-1584.	1.3	1
15	A Silica Bilayer Supported on Ru(0001): Following the Crystallineâ€to Vitreous Transformation in Real Time with Spectroâ€microscopy. Angewandte Chemie - International Edition, 2020, 59, 10587-10593.	7.2	15
16	Chapter model systems in heterogeneous catalysis at the atomic level: a personal view. Science China Chemistry, 2020, 63, 426-447.	4.2	14
17	Thin Oxide Films as Model Systems for Heterogeneous Catalysts. Springer Handbooks, 2020, , 267-328.	0.3	1
18	Interaction of water with oxide thin film model systems. Journal of Materials Research, 2019, 34, 360-378.	1.2	12

#	Article	IF	CITATIONS
19	From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization. Angewandte Chemie - International Edition, 2019, 58, 10903-10908.	7.2	10
20	From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization. Angewandte Chemie, 2019, 131, 11019-11024.	1.6	2
21	Assessing the film-substrate interaction in germania films on reconstructed Au(111). Physical Review B, 2019, 100 , .	1.1	4
22	Determination of Silica and Germania Film Network Structures on Ru(0001) at the Atomic Scale. Journal of Physical Chemistry C, 2019, 123, 7889-7897.	1.5	14
23	Atomic structure of a metal-supported two-dimensional germania film. Physical Review B, 2018, 97, .	1.1	16
24	A Two-Dimensional â€~Zigzag' Silica Polymorph on a Metal Support. Journal of the American Chemical Society, 2018, 140, 6164-6168.	6.6	14
25	Frontispiece: Charge Control in Model Catalysis: The Decisive Role of the Oxide–Nanoparticle Interface. Chemistry - A European Journal, 2018, 24, .	1.7	0
26	Charge Control in Model Catalysis: The Decisive Role of the Oxide–Nanoparticle Interface. Chemistry - A European Journal, 2018, 24, 2317-2327.	1.7	28
27	Transfer of 2D Silica Films. , 2018, , 360-366.		1
28	Bending Rigidity of 2D Silica. Physical Review Letters, 2018, 120, 226101.	2.9	17
29	Modelling the atomic arrangement of amorphous 2D silica: a network analysis. Physical Chemistry Chemical Physics, 2018, 20, 14725-14739.	1.3	28
30	Two-dimensional silica opens new perspectives. Progress in Surface Science, 2017, 92, 341-374.	3.8	71
31	Assessing the amorphousness and periodicity of common domain boundaries in silica bilayers on Ru(O O O 1). Journal of Physics Condensed Matter, 2017, 29, 035002.	0.7	22
32	Apparatus for low temperature thermal desorption spectroscopy of portable samples. Review of Scientific Instruments, 2016, 87, 045103.	0.6	5
33	A Large-Area Transferable Wide Band Gap 2D Silicon Dioxide Layer. ACS Nano, 2016, 10, 7982-7989.	7.3	47
34	Resolving amorphous solid-liquid interfaces by atomic force microscopy. Applied Physics Letters, 2016, 108, .	1.5	16
35	Building block analysis of 2D amorphous networks reveals medium range correlation. Journal of Non-Crystalline Solids, 2016, 435, 40-47.	1.5	36
36	Aktivierung und Elektronentransferâ€induzierte Reaktion von Kohlendioxid an einer Oxidâ€Metallâ€Grenzflähe. Angewandte Chemie, 2015, 127, 12661-12665.	1.6	12

#	Article	IF	CITATIONS
37	Carbon Dioxide Activation and Reaction Induced by Electron Transfer at an Oxide–Metal Interface. Angewandte Chemie - International Edition, 2015, 54, 12484-12487.	7.2	80
38	MgO on Mo(001): Local Work Function Measurements above Pristine Terrace and Line Defect Sites. Journal of Physical Chemistry C, 2015, 119, 12283-12290.	1.5	18
39	Atomic Scale Characterization of Defects on Oxide Surfaces. Springer Series in Surface Sciences, 2015, , 29-80.	0.3	9
40	Characterizing Crystalline-Vitreous Structures: From Atomically Resolved Silica to Macroscopic Bubble Rafts. Journal of Chemical Education, 2015, 92, 1896-1902.	1.1	5
41	The Atomic Structure of Two-Dimensional Silica. Nanoscience and Technology, 2015, , 327-353.	1.5	7
42	Ultrathin Silica Films: The Atomic Structure of Twoâ€Dimensional Crystals and Glasses. Chemistry - A European Journal, 2014, 20, 9176-9183.	1.7	51
43	Understanding surface core-level shifts using the Auger parameter: A study of Pd atoms adsorbed on ultrathin SiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> films. Physical Review B, 2014, 89, .	1.1	38
44	Topological Investigation of Two-Dimensional Amorphous Materials. Zeitschrift Fur Physikalische Chemie, 2014, 228, 587-607.	1.4	19
45	Adsorption of Au and Pd on Ruthenium-Supported Bilayer Silica. Journal of Physical Chemistry C, 2014, 118, 20959-20969.	1.5	46
46	From Ordered to Vitreous Oxide Films. , 2014, , 641-690.		0
47	A portable quartz micro balance for physical vapor deposition techniques. Review of Scientific Instruments, 2013, 84, 085118.	0.6	2
48	Structure and Motion of a 2D Glass. Science, 2013, 342, 201-202.	6.0	17
49	Model studies on heterogeneous catalysts at the atomic scale: From supported metal particles to two-dimensional zeolites. Journal of Catalysis, 2013, 308, 154-167.	3.1	27
50	Nonuniform friction-area dependency for antimony oxide surfaces sliding on graphite. Physical Review B, 2013, 88, .	1.1	11
51	Resolving oxide surfaces – From point and line defects to complex network structures. Physica Status Solidi (B): Basic Research, 2013, 250, 895-921.	0.7	11
52	Back Cover: Resolving oxide surfaces – From point and line defects to complex network structures (Phys. Status Solidi B 5/2013). Physica Status Solidi (B): Basic Research, 2013, 250, .	0.7	0
53	Probing the properties of metal–oxide interfaces: silica films on Mo and Ru supports. Journal of Physics Condensed Matter, 2012, 24, 354010.	0.7	20
54	Enhanced atomic corrugation in dynamic force microscopyâ€"The role of repulsive forces. Applied Physics Letters, 2012, 100, 123105.	1.5	5

#	Article	IF	Citations
55	Crystalline-Vitreous Interface in Two Dimensional Silica. Physical Review Letters, 2012, 109, 106101.	2.9	92
56	Atomic Arrangement in Two-Dimensional Silica: From Crystalline to Vitreous Structures. Journal of Physical Chemistry C, 2012, 116, 20426-20432.	1.5	82
57	Two-dimensional silica: Crystalline and vitreous. Chemical Physics Letters, 2012, 550, 1-7.	1.2	61
58	Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra. Physical Chemistry Chemical Physics, 2012, 14, 11344.	1.3	106
59	Imaging and manipulation of adatoms on an alumina surface by noncontact atomic force microscopy. Journal of Physics Condensed Matter, 2012, 24, 084007.	0.7	6
60	The Atomic Structure of a Metalâ€Supported Vitreous Thin Silica Film. Angewandte Chemie - International Edition, 2012, 51, 404-407.	7.2	207
61	Atomic structure of surface defects in alumina studied by dynamic force microscopy: strain-relief-, translation- and reflection-related boundaries, including their junctions. New Journal of Physics, 2011, 13, 123028.	1.2	17
62	Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy. Beilstein Journal of Nanotechnology, 2011, 2, 1-14.	1.5	21
63	Three-dimensional electrostatic interactions in dynamic force microscopy: Experiment and theory. Physical Review B, 2011, 83, .	1.1	3
64	Local Work Function Differences at Line Defects in Aluminium Oxide on NiAl(110). ChemPhysChem, 2010, 11, 2085-2087.	1.0	13
65	Structure and electronic properties of step edges in the aluminum oxide film on NiAl(110). Physical Review B, 2010, 82, .	1.1	16
66	Imaging of individual adatoms on oxide surfaces by dynamic force microscopy. Physical Review B, 2010, 81, .	1.1	4
67	Growth and Structure of Crystalline Silica Sheet on Ru(0001). Physical Review Letters, 2010, 105, 146104.	2.9	198
68	Direct Measurement of the Attractive Interaction Forces on F ⁰ Color Centers on MgO(001) by Dynamic Force Microscopy. ACS Nano, 2010, 4, 2510-2514.	7.3	29
69	A portable microevaporator for low temperature single atom studies by scanning tunneling and dynamic force microscopy. Review of Scientific Instruments, 2009, 80, 113705.	0.6	8
70	Atomic resolution on a metal single crystal with dynamic force microscopy. Applied Physics Letters, 2009, 95, .	1.5	18
71	Atomic structure of the ultrathin alumina on NiAl(110) and its antiphase domain boundaries as seen by frequency modulation dynamic force microscopy. New Journal of Physics, 2009, 11, 093009.	1.2	26
72	Work Function Measurements of Thin Oxide Films on Metalsâ€"MgO on Ag(001). Journal of Physical Chemistry C, 2009, 113, 11301-11305.	1.5	102

#	Article	IF	CITATIONS
73	Measuring the Charge State of Point Defects on MgO/Ag(001). Journal of the American Chemical Society, 2009, 131, 17544-17545.	6.6	95
74	Study of Thin Oxide Films with NC-AFM: Atomically Resolved Imaging and Beyond. Nanoscience and Technology, 2009, , 143-167.	1.5	0
75	Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy. Review of Scientific Instruments, 2008, 79, 033704.	0.6	64
76	Surface Species Formed by the Adsorption and Dissociation of Water Molecules on a Ru(0001) Surface Containing a Small Coverage of Carbon Atoms Studied by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2008, 112, 7445-7454.	1.5	50
77	Au Dimers on Thin MgO(001) Films: Flat and Charged or Upright and Neutral?. Journal of the American Chemical Society, 2008, 130, 7814-7815.	6.6	62
78	Charge-induced formation of linear Au clusters on thin MgO films: Scanning tunneling microscopy and density-functional theory study. Physical Review B, 2008, 78, .	1.1	64
79	A Scanning Tunneling Microscopy Observation of (\$sqrt{3}imessqrt{3}\$) R30° Reconstructed Ni2P(0001). Japanese Journal of Applied Physics, 2008, 47, 6088-6091.	0.8	16
80	Atomically resolved force microscopy images of complex surface unit cells: Ultrathin alumina film on NiAl(110). Physical Review B, 2008, 78 , .	1.1	24
81	Superlattice structure of an Ar monolayer on Ag(111) observed by low-temperature scanning tunneling microscopy. Physical Review B, 2008, 78, .	1.1	1
82	Recipes for cantilever parameter determination in dynamic force spectroscopy: spring constant and amplitude. Nanotechnology, 2007, 18, 255503.	1.3	68
83	Substrate-mediated interaction and electron-induced diffusion of single lithium atoms on Ag(001). Physical Review B, 2007, 75, .	1.1	16
84	Crossover from Three-Dimensional to Two-Dimensional Geometries of Au Nanostructures on Thin MgO(001) Films: A Confirmation of Theoretical Predictions. Physical Review Letters, 2007, 98, 206103.	2.9	211
85	Control of the Charge State of Metal Atoms on Thin MgO Films. Physical Review Letters, 2007, 98, 096107.	2.9	310
86	Palladium Monomers, Dimers, and Trimers on the MgO(001) Surface Viewed Individually. Angewandte Chemie - International Edition, 2007, 46, 8703-8706.	7.2	32
87	Nanotribological Studies by Nanoparticle Manipulation. Nanoscience and Technology, 2007, , 561-582.	1.5	3
88	Electron Paramagnetic Resonance and Scanning Tunneling Microscopy Investigations on the Formation of F+and F0Color Centers on the Surface of Thin MgO(001) Films. Journal of Physical Chemistry B, 2006, 110, 8665-8669.	1.2	51
89	Identification of Color Centers on MgO(001) Thin Films with Scanning Tunneling Microscopy. Journal of Physical Chemistry B, 2006, 110, 46-49.	1.2	143
90	Binding of Single Gold Atoms on Thin MgO(001) Films. Physical Review Letters, 2006, 96, 146804.	2.9	120

#	Article	IF	CITATIONS
91	Interaction of Gold Clusters with Color Centers on MgO(001) Films. Angewandte Chemie - International Edition, 2006, 45, 2630-2632.	7.2	154
92	Frequency modulated atomic force microscopy on MgO(001) thin films: interpretation of atomic image resolution and distance dependence of tipâ€"sample interaction. Nanotechnology, 2006, 17, S101-S106.	1.3	14
93	Signal electronics for an atomic force microscope equipped with a double quartz tuning fork sensor. Review of Scientific Instruments, 2006, 77, 043710.	0.6	32
94	Probing adsorption sites on thin oxide films by dynamic force microscopy. Applied Physics Letters, 2006, 89, 263107.	1.5	59
95	Frequency-modulated atomic force spectroscopy on NiAl(110) partially covered with a thin alumina film. Physical Review B, 2006, 73, .	1.1	9
96	Interaction of CO molecules with surface state electrons on Ag(111). Surface Science, 2005, 590, L253-L258.	0.8	42
97	A reverse pendulum bath cryostat design suitable for low temperature scanning probe microscopy. Measurement Science and Technology, 2005, 16, 859-864.	1.4	3
98	STM studies of ordered(31×31)R9°CO islands on Ag(111). Physical Review B, 2005, 71, .	1.1	9
99	Atomic resolution on MgO(001) by atomic force microscopy using a double quartz tuning fork sensor at low-temperature and ultrahigh vacuum. Applied Physics Letters, 2005, 87, 083104.	1.5	52
100	Contact-area dependence of frictional forces: Moving adsorbed antimony nanoparticles. Physical Review B, 2005, 71, .	1.1	98
101	Double quartz tuning fork sensor for low temperature atomic force and scanning tunneling microscopy. Review of Scientific Instruments, 2004, 75, 2446-2450.	0.6	56
102	Controlled Translational Manipulation of Small Latex Spheres by Dynamic Force Microscopy. Langmuir, 2002, 18, 7798-7803.	1.6	58
103	Dynamic plowing nanolithography on polymethylmethacrylate using an atomic force microscope. Review of Scientific Instruments, 2001, 72, 136-141.	0.6	93
104	Dislocation of antimony clusters on graphite by means of dynamic plowing nanolithography. Surface Science, 2001, 476, 54-62.	0.8	17
105	Submicrosecond range surface heating and temperature measurement for efficient sensor reactivation. Thin Solid Films, 2001, 391, 143-148.	0.8	12
106	Measuring SPM Piezo Displacement Responses. Microscopy Today, 1999, 7, 24-26.	0.2	0
107	New application for the calibration of scanning probe microscopy piezos., 1999, 27, 291-295.		7
108	The Use of a Fibre-Based Light Sensor for the Calibration of Scanning Probe Microscopy Piezos. Physica Status Solidi A, 1999, 173, 225-234.	1.7	0

Markus Heyde

#	Article	IF	CITATIONS
109	Direct Observation of Platinum Etching during the Fluorination of a Pt/LaF3/Si Structure. Physica Status Solidi A, 1999, 176, 943-952.	1.7	4
110	Growth of Nâ€Heterocyclic Carbene Assemblies on Cu(100) and Cu(111): from Single Molecules to Magicâ€Number Islands. Angewandte Chemie, 0, , .	1.6	2
111	Variation of bending rigidity with material density: bilayer silica with nanoscale holes. Physical Chemistry Chemical Physics, 0, , .	1.3	2