
Kaien Fujino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5769187/publications.pdf Version: 2024-02-01

KAIEN FUUNO

#	Article	IF	CITATIONS
1	Functional characterization and vacuolar localization of fructan exohydrolase derived from onion (<i>Allium cepa</i>). Journal of Experimental Botany, 2022, 73, 4908-4922.	4.8	4
2	The B″-family subunits of protein phosphatase 2A are necessary for in-vitro dephosphorylation of the Arabidopsis mechanosensory transcription factor VIP1. Biochemical and Biophysical Research Communications, 2021, 534, 353-358.	2.1	2
3	The plant nuclear lamina proteins NMCP1 and NMCP2 form a filamentous network with lateral filament associations. Journal of Experimental Botany, 2021, 72, 6190-6204.	4.8	11
4	Revision of the relationship between anther morphology and pollen sterility by cold stress at the booting stage in rice. Annals of Botany, 2021, 128, 559-575.	2.9	5
5	NDR/LATSâ€family protein kinase genes are indispensable for embryogenesis in Arabidopsis. FEBS Open Bio, 2021, 11, 2600-2606.	2.3	2
6	VIP1, a bZIP protein, interacts with the catalytic subunit of protein phosphatase 2A in Arabidopsis thaliana. Plant Signaling and Behavior, 2020, 15, 1706026.	2.4	3
7	Data of whole genome sequencing of five garden asparagus (Asparagus officinalis) individuals with the MinION nanopore sequencer. Data in Brief, 2020, 28, 104838.	1.0	1
8	A GDSL-type esterase/lipase gene, GELP77, is necessary for pollen dissociation and fertility in Arabidopsis. Biochemical and Biophysical Research Communications, 2020, 526, 1036-1041.	2.1	20
9	A putative AGAMOUS ortholog is a candidate for the gene determining ease of dehulling in Tartary buckwheat (Fagopyrum tataricum). Planta, 2020, 251, 85.	3.2	6
10	CRISPR/Cas9-Mediated Editing of Genes Encoding rgs-CaM-like Proteins in Transgenic Potato Plants. Methods in Molecular Biology, 2019, 2028, 153-165.	0.9	5
11	Protein phosphatase 2A regulates the nuclear accumulation of the Arabidopsis bZIP protein VIP1 under hypo-osmotic stress. Journal of Experimental Botany, 2019, 70, 6101-6112.	4.8	21
12	Development of a DNA marker for variety discrimination specific to â€~Manten-Kirari' based on an NGS-RNA sequence in Tartary buckwheat (Fagopyrum tataricum). Food Chemistry, 2019, 295, 51-57.	8.2	11
13	Death of female flower microsporocytes progresses independently of meiosis-like process and can be accelerated by specific transcripts in Asparagus officinalis. Scientific Reports, 2019, 9, 2703.	3.3	5
14	B-family subunits of protein phosphatase 2A are necessary for pollen development but not for female gametophyte development in Arabidopsis. Biochemical and Biophysical Research Communications, 2018, 505, 176-180.	2.1	4
15	Possible inhibition of Arabidopsis VIP1-mediated mechanosensory signaling by streptomycin. Plant Signaling and Behavior, 2018, 13, e1521236.	2.4	4
16	Calcium signalling regulates the functions of the bZIP protein VIP1 in touch responses in <i>Arabidopsis thaliana</i> . Annals of Botany, 2018, 122, 1219-1229.	2.9	17
17	Identification of candidates for interacting partners of the tail domain of DcNMCP1, a major component of the Daucus carota nuclear lamina-like structure. Nucleus, 2017, 8, 312-322.	2.2	9
18	A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis. Scientific Reports, 2017, 7, 41497.	3.3	37

Kaien Fujino

#	Article	IF	CITATIONS
19	Determination of the Absolute Configuration of a Monoglyceride Antibolting Compound and Isolation of Related Compounds from Radish Leaves (Raphanus sativus). Journal of Natural Products, 2017, 80, 872-878.	3.0	10
20	Detainment of Tam3 Transposase at Plasma Membrane by Its BED-Zinc Finger Domain. Plant Physiology, 2017, 173, 1492-1501.	4.8	5
21	A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean. PLoS ONE, 2015, 10, e0128527.	2.5	35
22	Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain. Frontiers in Plant Science, 2014, 5, 62.	3.6	17
23	Molecular basis of a shattering resistance boosting global dissemination of soybean. Proceedings of the United States of America, 2014, 111, 17797-17802.	7.1	166
24	Isolation of a major genetic interaction associated with an extreme phenotype using assorted F2 populations in rice. Molecular Breeding, 2014, 33, 997-1003.	2.1	2
25	Mapping and use of QTLs controlling pod dehiscence in soybean. Breeding Science, 2012, 61, 554-558.	1.9	19
26	Temperature controls nuclear import of Tam3 transposase in <i>Antirrhinum</i> . Plant Journal, 2011, 65, 146-155.	5.7	35
27	Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Molecular Breeding, 2010, 25, 407-418.	2.1	37
28	A major QTL, qPDH1, is commonly involved in shattering resistance of soybean cultivars. Breeding Science, 2009, 59, 435-440.	1.9	23
29	A Major Soybean QTL, <i>qPDH1</i> , Controls Pod Dehiscence without Marked Morphological Change. Plant Production Science, 2009, 12, 217-223.	2.0	32
30	Multiple regulatory mechanisms influence the activity of the transposon, <i>Tam3</i> , of <i>Antirrhinum</i> . New Phytologist, 2008, 179, 343-355.	7.3	9
31	Confirmation of the location and the effects of a major QTL controlling pod dehiscence, qPDH1, in soybean. Breeding Science, 2008, 58, 63-69.	1.9	23
32	Expression, Cloning, and Immunological Analysis of Buckwheat (<i>Fagopyrum esculentum</i>) Tj ETQq0 0 0 r	gBT <u>/</u> Qverlc	ock 10 Tf 50 2
33	Molecular characterization of buckwheat major immunoglobulin E-reactive proteins in allergic patients. Allergology International, 2000, 49, 117-124.	3.3	15
34	Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta, 2000, 211, 756-759.	3.2	94
35	Assembly and disassembly of the peripheral architecture of the plant cell nucleus during mitosis. Planta, 1999, 210, 165-167.	3.2	27
36	Detection of immunologically related Kunitz and Bowman-Birk proteinase inhibitors expressed during	3.9	10

potato tuber development. Plant Molecular Biology, 1994, 26, 961-969.