Peter Shewry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576853/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative compositions of metabolites and dietary fibre components in doughs and breads produced from bread wheat, emmer and spelt and using yeast and sourdough processes. Food Chemistry, 2022, 374, 131710.	8.2	22
2	Wheat amylase/trypsin inhibitors (ATIs): occurrence, function and health aspects. European Journal of Nutrition, 2022, 61, 2873-2880.	3.9	18
3	Is bread bad for health?. Journal of Cereal Science, 2022, 105, 103447.	3.7	1
4	Localisation of iron and zinc in grain of biofortified wheat. Journal of Cereal Science, 2022, 105, 103470.	3.7	10
5	Opinion Exploiting genomics to improve the benefits of wheat: Prospects and limitations. Journal of Cereal Science, 2022, 105, 103444.	3.7	4
6	Do ancient wheats contain less gluten than modern bread wheat, in favour of better health?. Nutrition Bulletin, 2022, 47, 157-167.	1.8	3
7	Wheat glutenin polymers 1. structure, assembly and properties. Journal of Cereal Science, 2022, 106, 103486.	3.7	23
8	Do gluten peptides stimulate weight gain in humans?. Nutrition Bulletin, 2022, 47, 186-198.	1.8	4
9	Increased bioavailability of phenolic acids and enhanced vascular function following intake of feruloyl esterase-processed high fibre bread: A randomized, controlled, single blind, crossover human intervention trial. Clinical Nutrition, 2021, 40, 788-795.	5.0	13
10	Development of a method for the detection of zinc in Brassica oleracea using solid phase extraction and size-exclusion chromatography inductively coupled plasma mass spectrometry (SEC-ICP-MS). MethodsX, 2021, 8, 101428.	1.6	2
11	Wheat amino acid transporters highly expressed in grain cells regulate amino acid accumulation in grain. PLoS ONE, 2021, 16, e0246763.	2.5	11
12	Accumulation and deposition of triacylglycerols in the starchy endosperm of wheat grain. Journal of Cereal Science, 2021, 98, 103167.	3.7	9
13	Subcellular dynamics studies of iron reveal how tissueâ€specific distribution patterns are established in developing wheat grains. New Phytologist, 2021, 231, 1644-1657.	7.3	15
14	RNAi suppression of xylan synthase genes in wheat starchy endosperm. PLoS ONE, 2021, 16, e0256350.	2.5	2
15	Development of a reproducible method of analysis of iron, zinc and phosphorus in vegetables digests by SEC-ICP-MS. Food Chemistry, 2020, 308, 125652.	8.2	7
16	Spatial distribution of functional components in the starchy endosperm of wheat grains. Journal of Cereal Science, 2020, 91, 102869.	3.7	36
17	Do modern types of wheat have lower quality for human health?. Nutrition Bulletin, 2020, 45, 362-373.	1.8	23
18	The contribution of fiber components to water absorption of wheat grown in the UK. Cereal Chemistry, 2020, 97, 940-948.	2.2	3

PETER SHEWRY

#	Article	IF	CITATIONS
19	Strategies to improve wheat for human health. Nature Food, 2020, 1, 475-480.	14.0	54
20	Loss of TaIRX9b gene function in wheat decreases chain length and amount of arabinoxylan in grain but increases crossâ€linking. Plant Biotechnology Journal, 2020, 18, 2316-2327.	8.3	16
21	Stability analysis of wheat lines with increased level of arabinoxylan. PLoS ONE, 2020, 15, e0232892.	2.5	11
22	Historical changes in the contents and compositions of fibre components and polar metabolites in white wheat flour. Scientific Reports, 2020, 10, 5920.	3.3	13
23	Genetic variation in wheat grain quality is associated with differences in the galactolipid content of flour and the gas bubble properties of dough liquor. Food Chemistry: X, 2020, 6, 100093.	4.3	12
24	ldentification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS ONE, 2020, 15, e0227826.	2.5	20
25	Wheat Cell Wall Polysaccharides (Dietary Fibre). , 2020, , 255-272.		2
26	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
27	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		Ο
28	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		0
29	Stability analysis of wheat lines with increased level of arabinoxylan. , 2020, 15, e0232892.		Ο
30	Estimation of the iron bioavailability in green vegetables using an in vitro digestion/Caco-2 cell model. Food Chemistry, 2019, 301, 125292.	8.2	13
31	Gradients of Gluten Proteins and Free Amino Acids along the Longitudinal Axis of the Developing Caryopsis of Bread Wheat. Journal of Agricultural and Food Chemistry, 2019, 67, 8706-8714.	5.2	7
32	Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers?. Food Chemistry: X, 2019, 3, 100047.	4.3	44
33	Adverse Reactions to Wheat or Wheat Components. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1437-1452.	11.7	71
34	Exploring the Role of Cereal Dietary Fiber in Digestion. Journal of Agricultural and Food Chemistry, 2019, 67, 8419-8424.	5.2	17
35	Improving wheat as a source of iron and zinc for global nutrition. Nutrition Bulletin, 2019, 44, 53-59.	1.8	69
36	The stage of seed development influences iron bioavailability in pea (Pisum sativum L.). Scientific Reports, 2018, 8, 6865.	3.3	39

PETER SHEWRY

#	Article	IF	CITATIONS
37	Comparison of the dietary fibre composition of old and modern durum wheat (Triticum turgidum spp.) Tj ETQq1 I	1 0.78431	4 rgBT /Ove
38	Intrinsic wheat lipid composition effects the interfacial and foaming properties of dough liquor. Food Hydrocolloids, 2018, 75, 211-222.	10.7	18
39	Do ancient types of wheat have health benefits compared with modern bread wheat?. Journal of Cereal Science, 2018, 79, 469-476.	3.7	131
40	Gradients in compositions in the starchy endosperm of wheat have implications for milling and processing. Trends in Food Science and Technology, 2018, 82, 1-7.	15.1	30
41	Effects of Organic and Conventional Crop Nutrition on Profiles of Polar Metabolites in Grain of Wheat. Journal of Agricultural and Food Chemistry, 2018, 66, 5346-5351.	5.2	10
42	Role of polysaccharides in food, digestion, and health. Critical Reviews in Food Science and Nutrition, 2017, 57, 237-253.	10.3	377
43	Defining genetic and chemical diversity in wheat grain by 1Hâ€NMR spectroscopy of polar metabolites. Molecular Nutrition and Food Research, 2017, 61, 1600807.	3.3	28
44	Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. European Journal of Agronomy, 2017, 87, 19-29.	4.1	121
45	Effects of Cultivar and Nitrogen Nutrition on the Lipid Composition of Wheat Flour. Journal of Agricultural and Food Chemistry, 2017, 65, 5427-5434.	5.2	15
46	A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. Journal of Proteomics, 2017, 163, 67-75.	2.4	83
47	Feruloylation and structure of arabinoxylan in wheat endosperm cell walls from <scp>RNA</scp> i lines with suppression of genes responsible for backbone synthesis and decoration. Plant Biotechnology Journal, 2017, 15, 1429-1438.	8.3	37
48	Changes in the arabinoxylan fraction of wheat grain during alcohol production. Food Chemistry, 2017, 221, 1754-1762.	8.2	14
49	Development and characterization of wheat lines with increased levels of arabinoxylan. Euphytica, 2017, 213, 1.	1.2	16
50	Do we need to worry about eating wheat?. Nutrition Bulletin, 2016, 41, 6-13.	1.8	33
51	¹ Hâ€ <scp>NMR</scp> screening for the highâ€throughput determination of genotype and environmental effects on the content of asparagine in wheat grain. Plant Biotechnology Journal, 2016, 14, 128-139.	8.3	37
52	The dynamics of protein body formation in developing wheat grain. Plant Biotechnology Journal, 2016, 14, 1876-1882.	8.3	45
53	Improving wheat to remove coeliac epitopes but retain functionality. Journal of Cereal Science, 2016, 67, 12-21.	3.7	119
54	Improving wheat as a source of dietary fibre for human health. Proceedings of the Nutrition Society, 2015, 74, .	1.0	1

4

Peter Shewry

#	Article	IF	CITATIONS
55	Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion. Molecular Nutrition and Food Research, 2015, 59, 2034-2043.	3.3	75
56	The contribution of wheat to human diet and health. Food and Energy Security, 2015, 4, 178-202.	4.3	784
57	Distribution of Lipids in the Grain of Wheat (cv. Hereward) Determined by Lipidomic Analysis of Milling and Pearling Fractions. Journal of Agricultural and Food Chemistry, 2015, 63, 10705-10716.	5.2	59
58	Differentially penalized regression to predict agronomic traits from metabolites and markers in wheat. BMC Genetics, 2015, 16, 19.	2.7	16
59	Effect of Breadmaking Process on In Vitro Gut Microbiota Parameters in Irritable Bowel Syndrome. PLoS ONE, 2014, 9, e111225.	2.5	44
60	Effects of nitrogen nutrition on the synthesis and deposition of the ω-gliadins of wheat. Annals of Botany, 2014, 113, 607-615.	2.9	58
61	Effects of Genotype, Season, and Nitrogen Nutrition on Gene Expression and Protein Accumulation in Wheat Grain. Journal of Agricultural and Food Chemistry, 2014, 62, 4399-4407.	5.2	51
62	Distribution and Speciation of Iron and Zinc in Grain of Two Wheat Genotypes. Journal of Agricultural and Food Chemistry, 2014, 62, 708-716.	5.2	70
63	Effect of heat and drought stress on the structure and composition of arabinoxylan and β-glucan in wheat grain. Carbohydrate Polymers, 2014, 102, 557-565.	10.2	75
64	Improving cereal grain carbohydrates for diet and health. Journal of Cereal Science, 2014, 59, 312-326.	3.7	177
65	Effects of Nitrogen on the Distribution and Chemical Speciation of Iron and Zinc in Pearling Fractions of Wheat Grain. Journal of Agricultural and Food Chemistry, 2014, 62, 4738-4746.	5.2	50
66	lron and zinc complexation in wild-type and ferritin-expressing wheat grain: implications for mineral transport into developing grain. Journal of Biological Inorganic Chemistry, 2013, 18, 557-570.	2.6	43
67	A novel family of γ-gliadin genes are highly regulated by nitrogen supply in developing wheat grain. Journal of Experimental Botany, 2013, 64, 161-168.	4.8	47
68	Lunasin in cereal seeds: What is the origin?. Journal of Cereal Science, 2013, 57, 267-269.	3.7	16
69	Natural Variation in Grain Composition of Wheat and Related Cereals. Journal of Agricultural and Food Chemistry, 2013, 61, 8295-8303.	5.2	136
70	Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chemistry, 2013, 136, 1243-1248.	8.2	99
71	Spatial Patterns of Gluten Protein and Polymer Distribution in Wheat Grain. Journal of Agricultural and Food Chemistry, 2013, 61, 6207-6215.	5.2	64
72	Does wheat make us fat and sick?. Journal of Cereal Science, 2013, 58, 209-215.	3.7	73

Peter Shewry

#	Article	IF	CITATIONS
73	RNA Interference Suppression of Genes in Glycosyl Transferase Families 43 and 47 in Wheat Starchy Endosperm Causes Large Decreases in Arabinoxylan Content. Plant Physiology, 2013, 163, 95-107.	4.8	80
74	Literature review: â€~nonâ€lgEâ€mediated immune adverse reactions to foods'. EFSA Supporting Publications 2013, 10, .	^{5,} 0.7	2
75	Literature review: â€~in vitro digestibility tests for allergenicity assessment'. EFSA Supporting Publications, 2013, 10, 529E.	0.7	3
76	Cell Walls of Developing Wheat Starchy Endosperm: Comparison of Composition and RNA-Seq Transcriptome Â. Plant Physiology, 2012, 158, 612-627.	4.8	110
77	Effects of Genotype and Environment on the Contents of Betaine, Choline, and Trigonelline in Cereal Grains. Journal of Agricultural and Food Chemistry, 2012, 60, 5471-5481.	5.2	56
78	Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. Journal of Cereal Science, 2012, 55, 183-187.	3.7	59
79	Spectroscopic Analysis of Diversity of Arabinoxylan Structures in Endosperm Cell Walls of Wheat Cultivars (<i>Triticum aestivum</i>) in the HEALTHGRAIN Diversity Collection. Journal of Agricultural and Food Chemistry, 2011, 59, 7075-7082.	5.2	34
80	Relationship between the Contents of Bioactive Components in Grain and the Release Dates of Wheat Lines in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2011, 59, 928-933.	5.2	24
81	Genotype and Environment Effects on the Contents of Vitamins B1, B2, B3, and B6 in Wheat Grain. Journal of Agricultural and Food Chemistry, 2011, 59, 10564-10571.	5.2	51
82	Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Functional and Integrative Genomics, 2011, 11, 71-83.	3.5	76
83	Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Annals of Botany, 2011, 108, 23-35.	2.9	147
84	Diversity of agronomic and morphological traits in a mutant population of bread wheat studied in the Healthgrain program. Euphytica, 2010, 174, 409-421.	1.2	47
85	Effects of Genotype and Environment on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2010, 58, 9372-9383.	5.2	73
86	Effects of Crop Nutrition on Wheat Grain Composition and End Use Quality. Journal of Agricultural and Food Chemistry, 2010, 58, 3012-3021.	5.2	84
87	Trafficking of storage proteins in developing grain of wheat. Journal of Experimental Botany, 2009, 60, 979-991.	4.8	113
88	The HEALTHGRAIN programme opens new opportunities for improving wheat for nutrition and health. Nutrition Bulletin, 2009, 34, 225-231.	1.8	60
89	CHAPTER 3: Development, Structure, and Mechanical Properties of the Wheat Grain. , 2009, , 51-95.		21
90	Composition and End-Use Quality of 150 Wheat Lines Selected for the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9750-9757.	5.2	58

PETER SHEWRY

#	Article	IF	CITATIONS
91	The HEALTHGRAIN Cereal Diversity Screen: Concept, Results, and Prospects. Journal of Agricultural and Food Chemistry, 2008, 56, 9699-9709.	5.2	218
92	Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics, 2008, 9, 121.	2.8	183
93	Phenolic Acids in Wheat Varieties in the HEALTHGRAIN Diversity Screen. Journal of Agricultural and Food Chemistry, 2008, 56, 9732-9739.	5.2	314
94	A Novel Bioinformatics Approach Identifies Candidate Genes for the Synthesis and Feruloylation of Arabinoxylan. Plant Physiology, 2007, 144, 43-53.	4.8	181
95	A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnology Journal, 2006, 4, 381-392.	8.3	252
96	The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Advances in Food and Nutrition Research, 2003, 45, 219-302.	3.0	213
97	Endospermâ€specific activity of a storage protein gene promoter in transgenic wheat seed. Journal of Experimental Botany, 2001, 52, 243-250.	4.8	144
98	Spatial and temporal patterns of B hordein synthesis in developing barley (Hordeum vulgare L.) caryopses. Cell Biology International, 1993, 17, 195-204.	3.0	17