Sheila Samsatli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5768306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Technologies and infrastructures underpinning future CO 2 value chains: A comprehensive review and comparative analysis. Renewable and Sustainable Energy Reviews, 2018, 85, 46-68.	8.2	171
2	Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonising the domestic transport sector in Great Britain. International Journal of Hydrogen Energy, 2016, 41, 447-475.	3.8	167
3	Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?. Renewable and Sustainable Energy Reviews, 2018, 98, 302-316.	8.2	164
4	The role of renewable hydrogen and inter-seasonal storage in decarbonising heat – Comprehensive optimisation of future renewable energy value chains. Applied Energy, 2019, 233-234, 854-893.	5.1	119
5	Bio-aviation Fuel: A Comprehensive Review and Analysis of the Supply Chain Components. Frontiers in Energy Research, 0, 8, .	1.2	115
6	A general spatio-temporal model of energy systems with a detailed account of transport and storage. Computers and Chemical Engineering, 2015, 80, 155-176.	2.0	82
7	The curious case of the conflicting roles of hydrogen in global energy scenarios. Sustainable Energy and Fuels, 2020, 4, 80-95.	2.5	77
8	A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies. Applied Energy, 2018, 220, 893-920.	5.1	76
9	Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation. Applied Energy, 2020, 275, 115172.	5.1	75
10	Fuel cell systems optimisation – Methods and strategies. International Journal of Hydrogen Energy, 2011, 36, 14678-14703.	3.8	69
11	Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle. Energy Conversion and Management, 2019, 186, 66-81.	4.4	68
12	The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation. Applied Energy, 2020, 257, 113936.	5.1	67
13	BVCM: A comprehensive and flexible toolkit for whole system biomass value chain analysis and optimisation – Mathematical formulation. Applied Energy, 2015, 147, 131-160.	5.1	65
14	Biorefineries and the food, energy, water nexus — towards a whole systems approach to design and planning. Current Opinion in Chemical Engineering, 2017, 18, 16-22.	3.8	55
15	A multi-objective optimisation model for a general polymer electrolyte membrane fuel cell system. Journal of Power Sources, 2010, 195, 2754-2763.	4.0	53
16	A general mixed integer linear programming model for the design and operation of integrated urban energy systems. Journal of Cleaner Production, 2018, 191, 458-479.	4.6	52
17	Optimization of oil palm empty fruit bunches value chain in Peninsular Malaysia. Food and Bioproducts Processing, 2020, 119, 179-194.	1.8	30
18	Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment, 2020, 17, 100287.	0.8	29

Sheila Samsatli

#	Article	IF	CITATIONS
19	Design of biomass value chains that are synergistic with the food–energy–water nexus: Strategies and opportunities. Food and Bioproducts Processing, 2019, 116, 170-185.	1.8	25
20	How to incentivise hydrogen energy technologies for net zero: Whole-system value chain optimisation of policy scenarios. Sustainable Production and Consumption, 2021, 27, 1215-1238.	5.7	24
21	Sustainable bio-economy that delivers the environment–food–energy–water nexus objectives: The current status in Malaysia. Food and Bioproducts Processing, 2019, 118, 167-186.	1.8	23
22	H2FC SUPERGEN: An overview of the Hydrogen and Fuel Cell research across the UK. International Journal of Hydrogen Energy, 2015, 40, 5534-5543.	3.8	21
23	How much land is available for sustainable palm oil?. Land Use Policy, 2021, 102, 105187.	2.5	21
24	Integrating fuzzy analytic hierarchy process into a multi-objective optimisation model for planning sustainable oil palm value chains. Food and Bioproducts Processing, 2020, 119, 48-74.	1.8	20
25	Mapping the spatial distribution and changes of oil palm land cover using an open source cloud-based mapping platform. International Journal of Remote Sensing, 2019, 40, 7459-7476.	1.3	18
26	Integrated production of food, energy, fuels and chemicals from rice crops: Multi-objective optimisation for efficient and sustainable value chains. Journal of Cleaner Production, 2021, 285, 124900.	4.6	14
27	Modelling and optimisation of oil palm biomass value chains and the environment–food–energy–water nexus in peninsular Malaysia. Biomass and Bioenergy, 2021, 144, 105912.	2.9	13
28	Fower-to-hydrogen and hydrogen-to-X pathways: Opportunities for next generation energy systems. , 2017, , .		8
29	Design of fuelâ€cell microâ€cogeneration systems through modeling and optimization. Wiley Interdisciplinary Reviews: Energy and Environment, 2012, 1, 181-193.	1.9	5
30	Power-to-hydrogen and hydrogen-to-X: Which markets? Which economic potential? Answers from the literature. , 2017, , .		5
31	A Fuzzy Analytic Hierarchy Process (FAHP) Approach to Multi-Objective Optimisation of Oil Palm Value Chains. Computer Aided Chemical Engineering, 2019, 46, 817-822.	0.3	5
32	Optimal Design and Operation of Heat Networks Utilising Hydrogen as an Energy Carrier. Computer Aided Chemical Engineering, 2017, 40, 2527-2532.	0.3	4
33	Best options for large-scale production of liquid biofuels by value chain modelling: A New Zealand case study. Applied Energy, 2022, 323, 119534.	5.1	4
34	A model for the multi-objective optimisation of a polymer electrolyte fuel cell micro-combined heat and power system. Computer Aided Chemical Engineering, 2010, , 949-954.	0.3	2
35	Multi-objective spatio-temporal optimisation for simultaneous planning, design and operation of sustainable and efficient value chains for rice crop. Computer Aided Chemical Engineering, 2019, 46, 1453-1458.	0.3	2
36	Resource and technology data for spatio-temporal value chain modelling of the Great Britain energy system. Data in Brief, 2020, 31, 105886.	0.5	2

#	Article	IF	CITATIONS
37	Whole-Systems Modelling of Alternatives for Future Domestic Transport. Computer Aided Chemical Engineering, 2016, 38, 457-462.	0.3	1
38	Food and bioenergy: capturing the synergies and conflicts in the design of value chains through spatio-temporal multi-objective optimisation. Computer Aided Chemical Engineering, 2018, 44, 1873-1878.	0.3	0
39	Data for spatio-temporal modelling and optimisation of multi-product rice value chains. Data in Brief, 2021, 34, 106694.	0.5	0
40	Renewable electricity integration at a regional level: Cantabria case study. Computer Aided Chemical Engineering, 2016, 38, 211-216.	0.3	0