Nikhil S Joshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5767772/publications.pdf Version: 2024-02-01

NIKHII S JOSHI

#	Article	IF	CITATIONS
1	Inflammation Directs Memory Precursor and Short-Lived Effector CD8+ T Cell Fates via the Graded Expression of T-bet Transcription Factor. Immunity, 2007, 27, 281-295.	6.6	1,542
2	CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014, 514, 380-384.	13.7	673
3	Regulatory T Cells in Tumor-Associated Tertiary Lymphoid Structures Suppress Anti-tumor T Cell Responses. Immunity, 2015, 43, 579-590.	6.6	360
4	Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature, 2014, 516, 428-431.	13.7	353
5	A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature, 2017, 545, 355-359.	13.7	265
6	The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. Journal of Experimental Medicine, 2015, 212, 2041-2056.	4.2	238
7	Effector CD8 T Cell Development: A Balancing Act between Memory Cell Potential and Terminal Differentiation. Journal of Immunology, 2008, 180, 1309-1315.	0.4	207
8	Neoantigen-driven B cell and CD4ÂT follicular helper cell collaboration promotes anti-tumor CD8 TÂcell responses. Cell, 2021, 184, 6101-6118.e13.	13.5	192
9	Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16601-16606.	3.3	186
10	The uniformity of phagosome maturation in macrophages. Journal of Cell Biology, 2004, 164, 185-194.	2.3	152
11	A reservoir of stem-like CD8 ⁺ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Science Immunology, 2021, 6, eabg7836.	5.6	123
12	Effects of Signal 3 during CD8 T cell priming: Bystander production of IL-12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine, 2009, 27, 2177-2187.	1.7	106
13	Differential Localization of Effector and Memory CD8 T Cell Subsets in Lymphoid Organs during Acute Viral Infection. Journal of Immunology, 2010, 185, 5315-5325.	0.4	100
14	Nurine myeloid dendritic cell-dependent toll-like receptor immunity is preserved with aging. Aging Cell, 2006, 5, 473-486.	3.0	90
15	Increased Numbers of Preexisting Memory CD8 T Cells and Decreased T-bet Expression Can Restrain Terminal Differentiation of Secondary Effector and Memory CD8 T Cells. Journal of Immunology, 2011, 187, 4068-4076.	0.4	76
16	Formation of IL-7Rαhigh and IL-7Rαlow CD8 T Cells during Infection Is Regulated by the Opposing Functions of GABPα and Gfi-1. Journal of Immunology, 2008, 180, 5309-5319.	0.4	72
17	Incidence of pancreatitis with the use of immune checkpoint inhibitors (ICI) in advanced cancers: A systematic review and meta-analysis. Pancreatology, 2019, 19, 587-594.	0.5	62
18	A Modular Assembly Platform for Rapid Generation of DNA Constructs. Scientific Reports, 2016, 6, 16836.	1.6	54

Nikhil S Joshi

#	Article	IF	CITATIONS
19	TLR4 Ligands Lipopolysaccharide and Monophosphoryl Lipid A Differentially Regulate Effector and Memory CD8+ T Cell Differentiation. Journal of Immunology, 2014, 192, 4221-4232.	0.4	53
20	Viperin Is Highly Induced in Neutrophils and Macrophages during Acute and Chronic Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2010, 184, 5723-5731.	0.4	52
21	Enhanced adaptive immune responses in lung adenocarcinoma through natural killer cell stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17460-17469.	3.3	50
22	Tfh-cell-derived interleukin 21 sustains effector CD8+ TÂcell responses during chronic viral infection. Immunity, 2022, 55, 475-493.e5.	6.6	48
23	Inducible de novo expression of neoantigens in tumor cells and mice. Nature Biotechnology, 2021, 39, 64-73.	9.4	32
24	Treg cell IL-10 and IL-35 exhaust CD8+ T cells in tumors. Nature Immunology, 2019, 20, 674-675.	7.0	27
25	Pathogen boosted adoptive cell transfer immunotherapy to treat solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 740-745.	3.3	25
26	NK Cell Responses Redefine Immunological Memory. Journal of Immunology, 2016, 197, 2963-2970.	0.4	23
27	Molecular MRI of the Immuno-Metabolic Interplay in a Rabbit Liver Tumor Model: A Biomarker for Resistance Mechanisms in Tumor-targeted Therapy?. Radiology, 2020, 296, 575-583.	3.6	19
28	A mouse model for the study of anti-tumor TÂcell responses in Kras-driven lung adenocarcinoma. Cell Reports Methods, 2021, 1, 100080.	1.4	13
29	Novel Mouse Models for Cancer Immunology. Annual Review of Cancer Biology, 2022, 6, 269-291.	2.3	9
30	Investigating Tumor-Associated Tertiary Lymphoid Structures in Murine Lung Adenocarcinoma. Methods in Molecular Biology, 2018, 1845, 259-273.	0.4	3
31	The transcription factors ZEB2 and T-bet cooperate to program cytotoxic T cell terminal differentiation in response to LCMV viral infection. Journal of Cell Biology, 2015, 211, 21130IA258.	2.3	1
32	Guilty by Association. Science, 2013, 339, 1160-1161.	6.0	0
33	Lineage Specifiers in Lung Cancer Are Ahead of Their TIME. Immunity, 2018, 49, 587-589.	6.6	0