Dominic De Nardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5767612/publications.pdf Version: 2024-02-01

DOMINIC DE NARDO

#	Article	IF	CITATIONS
1	Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation. Immunity, 2014, 40, 274-288.	14.3	1,692
2	The adaptor ASC has extracellular and 'prionoid' activities that propagate inflammation. Nature Immunology, 2014, 15, 727-737.	14.5	651
3	TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell, 2020, 183, 636-649.e18.	28.9	453
4	NLRP3 inflammasomes link inflammation and metabolic disease. Trends in Immunology, 2011, 32, 373-379.	6.8	352
5	Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine, 2015, 74, 181-189.	3.2	344
6	High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nature Immunology, 2014, 15, 152-160.	14.5	337
7	Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E961-E969.	7.1	337
8	Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Science Translational Medicine, 2016, 8, 333ra50.	12.4	271
9	The Inflammasomes and Autoinflammatory Syndromes. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 395-424.	22.4	241
10	Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Science Translational Medicine, 2016, 8, 332ra45.	12.4	241
11	TBK1 and IKKε Act Redundantly to Mediate STING-Induced NF-κB Responses in Myeloid Cells. Cell Reports, 2020, 31, 107492.	6.4	223
12	New Insights into Mechanisms Controlling the NLRP3 Inflammasome and Its Role in Lung Disease. American Journal of Pathology, 2014, 184, 42-54.	3.8	170
13	The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-11² Activation. Cell Reports, 2018, 25, 2339-2353.e4.	6.4	164
14	Understanding early TLR signaling through the Myddosome. Journal of Leukocyte Biology, 2019, 105, 339-351.	3.3	130
15	ATF3 Is a Key Regulator of Macrophage IFN Responses. Journal of Immunology, 2015, 195, 4446-4455.	0.8	121
16	Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-11². Journal of Experimental Medicine, 2015, 212, 927-938.	8.5	120
17	A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Annals of the Rheumatic Diseases, 2017, 76, 2085-2094.	0.9	118
18	Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity, 2020, 53, 533-547.e7.	14.3	98

DOMINIC DE NARDO

#	Article	IF	CITATIONS
19	Signaling Crosstalk during Sequential TLR4 and TLR9 Activation Amplifies the Inflammatory Response of Mouse Macrophages. Journal of Immunology, 2009, 183, 8110-8118.	0.8	94
20	A Mutation Outside the Dimerization Domain Causing Atypical STING-Associated Vasculopathy With Onset in Infancy. Frontiers in Immunology, 2018, 9, 1535.	4.8	90
21	Interleukin-1 receptor–associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. Journal of Biological Chemistry, 2018, 293, 15195-15207.	3.4	86
22	STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1Î ² expression. Nature Communications, 2020, 11, 3816.	12.8	78
23	Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Science Signaling, 2016, 9, ra3.	3.6	66
24	Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiological Reviews, 2017, 97, 1165-1209.	28.8	63
25	Autoinflammatory mutation in NLRC4 reveals a leucine-rich repeat (LRR)–LRR oligomerization interface. Journal of Allergy and Clinical Immunology, 2018, 142, 1956-1967.e6.	2.9	52
26	A Central Role for the Hsp90·Cdc37 Molecular Chaperone Module in Interleukin-1 Receptor-associated-kinase-dependent Signaling by Toll-like Receptors. Journal of Biological Chemistry, 2005, 280, 9813-9822.	3.4	48
27	Connexin-Dependent Transfer of cGAMP to Phagocytes Modulates Antiviral Responses. MBio, 2020, 11, .	4.1	44
28	Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nature Communications, 2022, 13, 2321.	12.8	43
29	Immortalization of Murine Bone Marrow-Derived Macrophages. Methods in Molecular Biology, 2018, 1784, 35-49.	0.9	42
30	Down-regulation of IRAK-4 is a component of LPS- and CpG DNA-induced tolerance in macrophages. Cellular Signalling, 2009, 21, 246-252.	3.6	34
31	Interferon Regulatory Factor 6 Differentially Regulates Toll-like Receptor 2-dependent Chemokine Gene Expression in Epithelial Cells. Journal of Biological Chemistry, 2014, 289, 19758-19768.	3.4	33
32	Measuring NLR Oligomerization II: Detection of ASC Speck Formation by Confocal Microscopy and Immunofluorescence. Methods in Molecular Biology, 2016, 1417, 145-158.	0.9	32
33	Molecular and spatial mechanisms governing STING signalling. FEBS Journal, 2021, 288, 5504-5529.	4.7	27
34	Optimization of transcription factor binding map accuracy utilizing knockout-mouse models. Nucleic Acids Research, 2014, 42, 13051-13060.	14.5	25
35	Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by <i>Mmp12</i> + macrophages. Journal of Experimental Medicine, 2022, 219, .	8.5	24
36	Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Science Immunology, 2022, 7, eabi6763.	11.9	22

DOMINIC DE NARDO

#	Article	IF	CITATIONS
37	Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. Advances in Experimental Medicine and Biology, 2017, 1024, 1-35.	1.6	15
38	The Critical Role of the Colony-Stimulating Factor-1 Receptor in the Differentiation of Myeloblastic Leukemia Cells. Molecular Cancer Research, 2008, 6, 458-467.	3.4	14
39	Regulation of IRAK-1 activation by its C-terminal domain. Cellular Signalling, 2009, 21, 719-726.	3.6	12
40	Emerging Concepts in Innate Immunity. Methods in Molecular Biology, 2018, 1714, 1-18.	0.9	12
41	Innate immunity. Current Opinion in Immunology, 2014, 26, v-vi.	5.5	11
42	Generation of Innate Immune Reporter Cells Using Retroviral Transduction. Methods in Molecular Biology, 2018, 1714, 97-117.	0.9	11
43	Discordance in STING-Induced Activation and Cell Death Between Mouse and Human Dendritic Cell Populations. Frontiers in Immunology, 2022, 13, 794776.	4.8	10
44	Editorial: Immunomodulation of Innate Immune Cells. Frontiers in Immunology, 2020, 11, 101.	4.8	3
45	Whole exome sequencing in systemic juvenile idiopathic arthritis. Pediatric Rheumatology, 2015, 13, .	2.1	0
46	Whole exome sequencing in systemic juvenile idiopathic arthritis. Pathology, 2016, 48, S43.	0.6	0
47	Inflammasomopathies: Diseases Linked to the NLRP3 Inflammasome. , 2012, , 23-65.		0
48	Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-112. Journal of Cell Biology, 2015, 209, 2095OIA104.	5.2	0