List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5767177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring Spatial Perspective Taking: Analysis of Four Measures Using Item Response Theory. Topics in Cognitive Science, 2023, 15, 46-74.	1.9	10
2	Longitudinal development of cognitive mapping from childhood to adolescence. Journal of Experimental Child Psychology, 2022, 219, 105412.	1.4	5
3	Fathers' and mothers' praise and spatial language during play with first graders: Patterns of interaction and relations to math achievement Developmental Psychology, 2022, 58, 1931-1946.	1.6	0
4	Pattern separation and pattern completion: Behaviorally separable processes?. Memory and Cognition, 2021, 49, 193-205.	1.6	17
5	Structuring Knowledge with Cognitive Maps and Cognitive Graphs. Trends in Cognitive Sciences, 2021, 25, 37-54.	7.8	114
6	The Ontogeny of Hippocampus-Dependent Memories. Journal of Neuroscience, 2021, 41, 920-926.	3.6	33
7	Why spatial is special in education, learning, and everyday activities. Cognitive Research: Principles and Implications, 2021, 6, 20.	2.0	10
8	Contingency of semantic generalization on episodic specificity varies across development. Current Biology, 2021, 31, 2690-2697.e5.	3.9	20
9	Finding formulas: Does active search facilitate appropriate generalization?. Cognitive Research: Principles and Implications, 2021, 6, 50.	2.0	0
10	Understanding relational binding in early childhood: Interacting effects of overlap and delay. Journal of Experimental Child Psychology, 2021, 208, 105152.	1.4	6
11	Relational binding and holistic retrieval in ageing. Memory, 2021, 29, 1197-1205.	1.7	3
12	How many apples make a quarter? The challenge of discrete proportional formats. Journal of Experimental Child Psychology, 2020, 192, 104774.	1.4	11
13	The Puzzle of Spatial Sex Differences: Current Status and Prerequisites to Solutions. Child Development Perspectives, 2020, 14, 251-257.	3.9	29
14	Desktop versus immersive virtual environments: effects on spatial learning. Spatial Cognition and Computation, 2020, 20, 328-363.	1.2	31
15	Early Knowledge About Space and Quantity. , 2020, , 410-434.		0
16	Cognitive Training: How Evidence, Controversies, and Challenges Inform Education Policy. Policy Insights From the Behavioral and Brain Sciences, 2020, 7, 80-86.	2.4	14
17	Effects of geometric toy design on parent–child interactions and spatial language. Early Childhood Research Quarterly, 2019, 46, 126-141.	2.7	31
18	Gainâ€Loss Framing Enhances Mnemonic Discrimination in Preschoolers. Child Development, 2019, 90, 1569-1578.	3.0	14

#	Article	IF	CITATIONS
19	Beyond small-scale spatial skills: Navigation skills and geoscience education. Cognitive Research: Principles and Implications, 2019, 4, 17.	2.0	20
20	A meta-analysis of sex differences in human navigation skills. Psychonomic Bulletin and Review, 2019, 26, 1503-1528.	2.8	108
21	Development of Holistic Episodic Recollection. Psychological Science, 2019, 30, 1696-1706.	3.3	28
22	Everyday taxi drivers: Do better navigators have larger hippocampi?. Cortex, 2019, 115, 280-293.	2.4	31
23	Finding our way. Current Biology, 2019, 29, R108-R109.	3.9	2
24	Spatial Skills, Reasoning, and Mathematics. , 2019, , 100-123.		7
25	Navigation and the developing brain. Journal of Experimental Biology, 2019, 222, .	1.7	45
26	It's All in the Details: Relations Between Young Children's Developing Pattern Separation Abilities and Hippocampal Subfield Volumes. Cerebral Cortex, 2019, 29, 3427-3433.	2.9	48
27	Improving Methodological Standards in Behavioral Interventions for Cognitive Enhancement. Journal of Cognitive Enhancement: Towards the Integration of Theory and Practice, 2019, 3, 2-29.	1.6	149
28	Building up and wearing down episodic memory: Mnemonic discrimination and relational binding Journal of Experimental Psychology: General, 2019, 148, 1463-1479.	2.1	33
29	Using principles of cognitive science to improve science learning in middle school: What works when and for whom?. Applied Cognitive Psychology, 2018, 32, 225-240.	1.6	4
30	Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 2018, 170, 86-106.	1.4	72
31	Where will it go? How children and adults reason about force and motion. Cognitive Development, 2018, 45, 113-124.	1.3	6
32	Spatial scaling, proportional thinking, and numerical understanding in 5- to 7-year-old children. Cognitive Development, 2018, 45, 57-67.	1.3	33
33	The ontogeny of relational memory and pattern separation. Developmental Science, 2018, 21, e12556.	2.4	62
34	When gestures show us the way: Co-thought gestures selectively facilitate navigation and spatial memory. Spatial Cognition and Computation, 2018, 18, 1-30.	1.2	17
35	First Direct Evidence of Cue Integration in Reorientation: A New Paradigm. Cognitive Science, 2018, 42, 923-936.	1.7	17
36	Scaling up Spatial Development: A Closer Look at Children's Scaling Ability and Its Relation to Number Knowledge. Mind, Brain, and Education, 2018, 12, 110-119.	1.9	7

#	Article	IF	CITATIONS
37	How Much as Compared to What: RelativeÂMagnitude as aÂKey Idea in Mathematics Cognition. Research in Mathematics Education, 2018, , 3-24.	0.3	3
38	Individual variation in human navigation. Current Biology, 2018, 28, R1004-R1008.	3.9	20
39	How Big Is Many? Development of Spatial and Numerical Magnitude Understanding. , 2018, , 157-176.		9
40	Move to learn: Integrating spatial information from multiple viewpoints. Cognition, 2018, 178, 7-25.	2.2	25
41	Cognitive Maps: Some People Make Them, Some People Struggle. Current Directions in Psychological Science, 2018, 27, 220-226.	5.3	50
42	Hippocampal Maturation Drives Memory from Generalization to Specificity. Trends in Cognitive Sciences, 2018, 22, 676-686.	7.8	102
43	Teachers' spatial skills across disciplines and education levels: Exploring nationally representative data Archives of Scientific Psychology, 2018, 6, 130-137.	0.8	14
44	An adaptive cue combination model of human spatial reorientation. Cognition, 2017, 163, 56-66.	2.2	72
45	Using analogy to learn about phenomena at scales outside human perception. Cognitive Research: Principles and Implications, 2017, 2, 21.	2.0	9
46	IV. RESULTS—LINKS BETWEEN SPATIAL ASSEMBLY, LATER SPATIAL SKILLS, AND CONCURRENT AND LATER MATHEMATICAL SKILLS. Monographs of the Society for Research in Child Development, 2017, 82, 71-80.	6.8	32
47	III. RESULTS-CONSIDERING THE 2-D AND 3-D TRIALS OF THE TOSA SEPARATELY AND TOGETHER. Monographs of the Society for Research in Child Development, 2017, 82, 56-70.	6.8	1
48	Dealing with Big Numbers: Representation and Understanding of Magnitudes Outside of Human Experience. Cognitive Science, 2017, 41, 1020-1041.	1.7	25
49	Commentary on Leibovich et al.: What next?. Behavioral and Brain Sciences, 2017, 40, e180.	0.7	0
50	VI. DISCUSSION AND IMPLICATIONS: HOW EARLY SPATIAL SKILLS PREDICT LATER SPATIAL AND MATHEMATICAL SKILLS. Monographs of the Society for Research in Child Development, 2017, 82, 89-109.	6.8	4
51	White matter structural connectivity and episodic memory in early childhood. Developmental Cognitive Neuroscience, 2017, 28, 41-53.	4.0	28
52	Keeping track of where we are: Spatial working memory in navigation. Visual Cognition, 2017, 25, 691-702.	1.6	27
53	Using Relational Reasoning to Learn About Scientific Phenomena at Unfamiliar Scales. Educational Psychology Review, 2017, 29, 11-25.	8.4	32
54	Nora S. Newcombe. Current Biology, 2017, 27, R1196-R1198.	3.9	0

#	Article	IF	CITATIONS
55	Embodied cognition and STEM learning: overview of a topical collection in CR:PI. Cognitive Research: Principles and Implications, 2017, 2, 38.	2.0	62
56	Multiple views of space: Continuous visual flow enhances small-scale spatial learning Journal of Experimental Psychology: Learning Memory and Cognition, 2017, 43, 851-861.	0.9	12
57	Development of Quantitative Thinking Across Correlated Dimensions. , 2016, , 1-33.		11
58	Where music meets space: Children's sensitivity to pitch intervals is related to their mental spatial transformation skills. Cognition, 2016, 151, 1-5.	2.2	10
59	Thinking spatially in the science classroom. Current Opinion in Behavioral Sciences, 2016, 10, 1-6.	3.9	34
60	Improving Middle School Science Learning Using Diagrammatic Reasoning. Science Education, 2016, 100, 1184-1213.	3.0	21
61	The relation between navigation strategy and associative memory: An individual differences approach Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 663-670.	0.9	6
62	How do (some) people make a cognitive map? Routes, places, and working memory Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 768-785.	0.9	154
63	Using mental transformation strategies for spatial scaling: Evidence from a discrimination task Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 1473-1479.	0.9	19
64	Learning to interpret topographic maps: Understanding layered spatial information. Cognitive Research: Principles and Implications, 2016, 1, 2.	2.0	24
65	Spatial Proportional Reasoning Is Associated With Formal Knowledge About Fractions. Journal of Cognition and Development, 2016, 17, 67-84.	1.3	55
66	The Shape of Things: The Origin of Young Children's Knowledge of the Names and Properties of Geometric Forms. Journal of Cognition and Development, 2016, 17, 142-161.	1.3	37
67	Seeing Like a Geologist: Bayesian Use of Expert Categories in Location Memory. Cognitive Science, 2016, 40, 440-454.	1.7	12
68	Young Children's Perception of Diagrammatic Representations. Spatial Cognition and Computation, 2015, 15, 227-245.	1.2	15
69	Thinking about quantity: the intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 2015, 6, 491-505.	2.8	84
70	Talking Shape: Parental Language With Electronic Versus Traditional Shape Sorters. Mind, Brain, and Education, 2015, 9, 136-144.	1.9	82
71	Children's Use of Slope to Guide Navigation: Sex Differences Relate to Spontaneous Slope Perception. Spatial Cognition and Computation, 2015, 15, 170-185.	1.2	17
72	The relation between spatial thinking and proportional reasoning in preschoolers. Journal of Experimental Child Psychology, 2015, 132, 213-220.	1.4	44

#	Article	IF	CITATIONS
73	Building Blocks for Developing Spatial Skills: Evidence From a Large, Representative U.S. Sample. Psychological Science, 2015, 26, 302-310.	3.3	190
74	Categorical biases in spatial memory: The role of certainty Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 473-481.	0.9	7
75	Using diagrams versus text for spaced restudy: Effects on learning in 10th grade biology classes. British Journal of Educational Psychology, 2015, 85, 59-74.	2.9	17
76	Teaching High School Biology Students to Coordinate Text and Diagrams: Relations with Transfer, Effort, and Spatial Skill. International Journal of Science Education, 2015, 37, 2476-2502.	1.9	23
77	Thinking About Spatial Thinking: New Typology, New Assessments. , 2015, , 179-192.		151
78	Picturing perspectives: development of perspective-taking abilities in 4- to 8-year-olds. Frontiers in Psychology, 2014, 5, 386.	2.1	92
79	The hippocampus is not a geometric module: processing environment geometry during reorientation. Frontiers in Human Neuroscience, 2014, 8, 596.	2.0	43
80	The Origins and Development of Magnitude Estimation. Ecological Psychology, 2014, 26, 147-157.	1.1	9
81	Deconstructing Building Blocks: Preschoolers' Spatial Assembly Performance Relates to Early Mathematical Skills. Child Development, 2014, 85, 1062-1076.	3.0	224
82	Two rooms, two representations? Episodicâ€like memory in toddlers and preschoolers. Developmental Science, 2014, 17, 743-756.	2.4	51
83	Mazes and Maps: Can Young Children Find Their Way?. Mind, Brain, and Education, 2014, 8, 89-96.	1.9	26
84	A slippery directional slope: Individual differences in using slope as a directional cue. Memory and Cognition, 2014, 42, 648-661.	1.6	11
85	Development of mental transformation abilities. Trends in Cognitive Sciences, 2014, 18, 536-542.	7.8	120
86	Finding the missing piece: Blocks, puzzles, and shapes fuel school readiness. Trends in Neuroscience and Education, 2014, 3, 7-13.	3.1	109
87	Variations in cognitive maps: Understanding individual differences in navigation Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 669-682.	0.9	172
88	Zooming in on spatial scaling: Preschool children and adults use mental transformations to scale spaces Developmental Psychology, 2014, 50, 1614-1619.	1.6	36
89	Malleability in the development of spatial reorientation. Developmental Psychobiology, 2013, 55, 243-255.	1.6	65
90	Effects of three diagram instruction methods on transfer of diagram comprehension skills: The critical role of inference while learning. Learning and Instruction, 2013, 26, 45-58.	3.2	56

#	Article	IF	CITATIONS
91	Exploring and Enhancing Spatial Thinking. Current Directions in Psychological Science, 2013, 22, 367-373.	5.3	193
92	Using a touch screen paradigm to assess the development of mental rotation between 3½ and 5½Âyears of age. Cognitive Processing, 2013, 14, 117-127.	1.4	86
93	Individual differences in mental rotation: what does gesture tell us?. Cognitive Processing, 2013, 14, 153-162.	1.4	39
94	Understanding spatial transformations: similarities and differences between mental rotation and mental folding. Cognitive Processing, 2013, 14, 105-115.	1.4	74
95	Elimination of sex difference in direction giving. Cognitive Processing, 2013, 14, 197-199.	1.4	1
96	25Âyears of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychonomic Bulletin and Review, 2013, 20, 1033-1054.	2.8	158
97	Play, attention, and learning: How do play and timing shape the development of attention and influence classroom learning?. Annals of the New York Academy of Sciences, 2013, 1292, 1-20.	3.8	26
98	Development of mental rotation in 3- to 5-year-old children. Cognitive Development, 2013, 28, 386-399.	1.3	120
99	Reorienting with terrain slope and landmarks. Memory and Cognition, 2013, 41, 214-228.	1.6	22
100	Location memory in the real world: Category adjustment effects in 3-dimensional space. Cognition, 2013, 128, 45-55.	2.2	25
101	Educating to Use Evidence in Thinking About Education. Mind, Brain, and Education, 2013, 7, 147-150.	1.9	2
102	Tracking the eyes to see what children remember. Memory, 2013, 21, 396-407.	1.7	27
103	The malleability of spatial skills: A meta-analysis of training studies Psychological Bulletin, 2013, 139, 352-402.	6.1	1,171
104	Are all types of vertical information created equal?. Behavioral and Brain Sciences, 2013, 36, 568-569.	0.7	4
105	Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 2013, 23, 515-528.	1.9	176
106	A New Twist on Studying the Development of Dynamic Spatial Transformations: Mental Paper Folding in Young Children. Mind, Brain, and Education, 2013, 7, 49-55.	1.9	50
107	Improving Students' Diagram Comprehension with Classroom Instruction. Journal of Experimental Education, 2013, 81, 511-537.	2.6	38
108	Taking Shape: Supporting Preschoolers' Acquisition of Geometric Knowledge Through Guided Play. Child Development, 2013, 84, 1872-1878.	3.0	203

#	Article	IF	CITATIONS
109	Cognitive development: changing views of cognitive change. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 479-491.	2.8	6
110	Geometry three ways: An fMRI investigation of geometric information processing during reorientation Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 1530-1541.	0.9	24
111	Getting the big picture: Development of spatial scaling abilities. Cognitive Development, 2012, 27, 270-282.	1.3	60
112	Six Myths About Spatial Thinking. International Journal of Science Education, 2012, 34, 955-971.	1.9	60
113	The world is not flat: Can people reorient using slope?. Journal of Experimental Psychology: Learning Memory and Cognition, 2011, 37, 354-367.	0.9	42
114	What Is Neoconstructivism?*. Child Development Perspectives, 2011, 5, 157-160.	3.9	24
115	Three Families of Isms. Child Development Perspectives, 2011, 5, 171-172.	3.9	2
116	Block Talk: Spatial Language During Block Play. Mind, Brain, and Education, 2011, 5, 143-151.	1.9	146
117	Finding Where and Saying Where: Developmental Relationships Between Place Learning and Language in the First Year. Journal of Cognition and Development, 2011, 12, 315-331.	1.3	67
118	A category adjustment approach to memory for spatial location in natural scenes Journal of Experimental Psychology: Learning Memory and Cognition, 2010, 36, 590-604.	0.9	37
119	Spinning in the scanner: Neural correlates of virtual reorientation Journal of Experimental Psychology: Learning Memory and Cognition, 2010, 36, 1097-1107.	0.9	41
120	Early Education for Spatial Intelligence: Why, What, and How. Mind, Brain, and Education, 2010, 4, 102-111.	1.9	191
121	Five Reasons to Doubt the Existence of a Geometric Module. Cognitive Science, 2010, 34, 1315-1356.	1.7	66
122	Young children's use of features to reorient is more than just associative: further evidence against a modular view of spatial processing. Developmental Science, 2010, 13, 213-220.	2.4	38
123	Introduction to the special section on spatial reference frames: Examining what and how information is encoded through the integration of cognitive, behavioral, and neuroscience approaches Journal of Experimental Psychology: Learning Memory and Cognition, 2010, 36, 573-575.	0.9	3
124	How focus at encoding affects children's source monitoring. Journal of Experimental Child Psychology, 2010, 105, 273-285.	1.4	7
125	On Tending to Our Scientific Knitting: Thinking About Gender in the Context of Evolution. , 2010, , 259-274.		5
126	Masked Reviews Are Not Fairer Reviews. Perspectives on Psychological Science, 2009, 4, 62-64.	9.0	7

#	Article	IF	CITATIONS
127	Memory Binding in Early Childhood: Evidence for a Retrieval Deficit. Child Development, 2009, 80, 1321-1328.	3.0	95
128	Psychology's role in mathematics and science education American Psychologist, 2009, 64, 538-550.	4.2	66
129	Of mice (Mus musculus) and toddlers (Homo sapiens): Evidence for species-general spatial reorientation Journal of Comparative Psychology (Washington, D C: 1983), 2009, 123, 342-345.	0.5	23
130	Durable and generalized effects of spatial experience on mental rotation: gender differences in growth patterns. Applied Cognitive Psychology, 2008, 22, 996-1013.	1.6	252
131	Training generalized spatial skills. Psychonomic Bulletin and Review, 2008, 15, 763-771.	2.8	179
132	Why size counts: children's spatial reorientation in large and small enclosures. Developmental Science, 2008, 11, 414-426.	2.4	135
133	Developing symbolic capacity one step at a time. Cognition, 2008, 106, 1-12.	2.2	37
134	Is language necessary for human spatial reorientation? Reconsidering evidence from dual task paradigms. Cognitive Psychology, 2008, 56, 142-163.	2.2	76
135	More than Just Hand Waving: Review of <i>Hearing Gestures: How Our Hands Help Us Think</i> . Journal of Cognition and Development, 2008, 9, 247-252.	1.3	3
136	Reorienting When Cues Conflict. Psychological Science, 2008, 19, 1301-1307.	3.3	142
137	DEVELOPMENT OF EPISODIC AND AUTOBIOGRAPHICAL MEMORY: A COGNITIVE NEUROSCIENCE PERSPECTIVE. Advances in Child Development and Behavior, 2007, 35, 37-85.	1.3	112
138	Learning geographical information from hypothetical maps. Memory and Cognition, 2007, 35, 895-909.	1.6	10
139	Explaining the Development of Spatial Reorientation. , 2007, , 53-76.		48
140	Developments in source monitoring: The role of thinking of others. Journal of Experimental Child Psychology, 2006, 93, 25-44.	1.4	17
141	Whorf versus Socrates, round 10. Trends in Cognitive Sciences, 2006, 10, 394-396.	7.8	15
142	Binding, relational memory, and recall of naturalistic events: A developmental perspective Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 89-100.	0.9	143
143	One Hidden Object, Two Spatial Codes: Young Children's Use of Relational and Vector Coding. Journal of Cognition and Development, 2006, 7, 503-525.	1.3	40
144	Is there a geometric module for spatial orientation? squaring theory and evidence. Psychonomic Bulletin and Review, 2005, 12, 1-23.	2.8	519

NORA S NEWCOMBE

#	Article	IF	CITATIONS
145	How Important Is the Digital Divide? The Relation of Computer and Videogame Usage to Gender Differences in Mental Rotation Ability. Sex Roles, 2005, 53, 433-441.	2.4	226
146	Preexisting Knowledge Versus On-Line Learning. Psychological Science, 2005, 16, 222-227.	3.3	36
147	Language as Destiny? Or Not. Human Development, 2005, 48, 309-314.	2.0	5
148	Socioeconomic Status Modifies the Sex Difference in Spatial Skill. Psychological Science, 2005, 16, 841-845.	3.3	264
149	Knowing Where Things Are in the Second Year of Life: Implications for Hippocampal Development. Journal of Cognitive Neuroscience, 2004, 16, 1443-1451.	2.3	97
150	Changes in reality monitoring and episodic memory in early childhood. Developmental Science, 2004, 7, 225-245.	2.4	63
151	Some Controls Control Too Much. Child Development, 2003, 74, 1050-1052.	3.0	50
152	An Event-Related Potential Study of Item Recognition Memory in Children and Adults. Journal of Cognition and Development, 2002, 3, 201-224.	1.3	30
153	Children's Use of Landmarks: Implications for Modularity Theory. Psychological Science, 2002, 13, 337-341.	3.3	255
154	The Nativist-Empiricist Controversy in the Context of Recent Research on Spatial and Quantitative Development. Psychological Science, 2002, 13, 395-401.	3.3	110
155	Biology Is to Medicine as Psychology Is to Education: True or False?. New Directions for Teaching and Learning, 2002, 2002, 9-18.	0.4	5
156	Developmental changes in source memory. Developmental Science, 2002, 5, 502-513.	2.4	200
157	Five commandments for APA American Psychologist, 2002, 57, 202-205.	4.2	3
158	Toddlers' Use of Metric Information and Landmarks to Reorient. Journal of Experimental Child Psychology, 2001, 80, 225-244.	1.4	276
159	A spatial coding analysis of the A-not-B error: What IS "Location at A�. Behavioral and Brain Sciences, 2001, 24, 57-58.	0.7	4
160	Remembering Early Childhood. Current Directions in Psychological Science, 2000, 9, 55-58.	5.3	34
161	Making Space. , 2000, , .		246
162	Infants' coding of location in continuous space. , 1999, 22, 483-510.		109

#	Article	IF	CITATIONS
163	Spatial Scaling in Young Children. Psychological Science, 1999, 10, 393-398.	3.3	146
164	What do misestimations and asymmetries in spatial judgement indicate about spatial representation?. Journal of Experimental Psychology: Learning Memory and Cognition, 1999, 25, 986-996.	0.9	48
165	When is a triangle not a triangle? Young children's developing concepts of geometric shape. Cognitive Development, 1998, 13, 547-559.	1.3	53
166	The development of spatial location coding: Place learning and dead reckoning in the second and third years. Cognitive Development, 1998, 13, 185-200.	1.3	248
167	Defining the †Radical Middle'. Human Development, 1998, 41, 210-214.	2.0	31
168	Sauce for the goose, sauce for the gander. Learning and Individual Differences, 1996, 8, 65-68.	2.7	5
169	Sexual-selection accounts of human characteristics: Just So Stories or scientific hypotheses?. Behavioral and Brain Sciences, 1996, 19, 259-260.	0.7	0
170	The Development of Hierarchical Representation of Two-Dimensional Space. Child Development, 1996, 67, 721.	3.0	49
171	The Development of Hierarchical Representation of Two-Dimensional Space. Child Development, 1996, 67, 721-739.	3.0	62
172	Environmental input to the development of sex-related differences in spatial and mathematical ability. Learning and Individual Differences, 1995, 7, 363-379.	2.7	154
173	Children′s Memory for Early Experience. Journal of Experimental Child Psychology, 1995, 59, 337-342.	1.4	2
174	Infantile Amnesia: Through a Glass Darkly. Child Development, 1994, 65, 31-40.	3.0	37
175	Infantile Amnesia: Through a Glass Darkly. Child Development, 1994, 65, 31.	3.0	25
176	Children's early ability to solve perspective-taking problems Developmental Psychology, 1992, 28, 635-643.	1.6	135
177	Relational aspects of identity: Late adolescents' perceptions of their relationships with parents. Journal of Experimental Child Psychology, 1990, 50, 357-369.	1.4	16
178	The Development of Spatial Perspective Taking. Advances in Child Development and Behavior, 1989, 22, 203-247.	1.3	58
179	The role of experience in spatial test performance: A meta-analysis. Sex Roles, 1989, 20, 327-344.	2.4	436
180	Nature/nurture in male/female mathematical giftedness. Behavioral and Brain Sciences, 1988, 11, 206-206.	0.7	0

#	Article	IF	CITATIONS
181	The paradox of proximity in early spatial representation. British Journal of Developmental Psychology, 1988, 6, 376-378.	1.7	9
182	Sex role and spatial ability: An EEG study. Neuropsychologia, 1986, 24, 731-735.	1.6	22
183	Turn Left at the Church, Or Three Miles North. Environment and Behavior, 1986, 18, 192-213.	4.7	170
184	Sex differences in spatial ability and spatial activities. Sex Roles, 1983, 9, 377-386.	2.4	195
185	Effect of age at puberty on spatial ability in girls: A question of mechanism Developmental Psychology, 1983, 19, 215-224.	1.6	64
186	Barrier effects in the cognitive maps of children and adults. Journal of Experimental Child Psychology, 1982, 34, 46-58.	1.4	118
187	Development of spatial cognition and cognitive development. New Directions for Child and Adolescent Development, 1982, 1982, 65-81.	2.2	2
188	Spatial abilities, sex differences and EEG functioning. Neuropsychologia, 1981, 19, 719-722.	1.6	97
189	Do 2¼2â€yearâ€olds hint? A study of directive forms in the speech of 2½â€yearâ€old children to adultsâ^—. Discourse Processes, 1981, 4, 239-252.	1.8	37
190	Transitions In Children's Roles and Capabilities. International Journal of Psychology, 1980, 15, 181-200.	2.8	13
191	Effects of speech style and sex of speaker on person perception Journal of Personality and Social Psychology, 1979, 37, 1293-1303.	2.8	72
192	Developmental changes in recognition memory for pictures of objects and scenes Developmental Psychology, 1977, 13, 337-341.	1.6	25
193	Semantic effects on ordered recall. Journal of Verbal Learning and Verbal Behavior, 1976, 15, 387-399.	3.7	20
194	Two fields are better than one: Developmental and cognitive perspectives on underatnding spatial reorientation. Comparative Cognition and Behavior Reviews, 0, 8, 78-97.	2.0	6
195	Navigating without vision: spontaneous use of terrain slant in outdoor place learning. Spatial Cognition and Computation, 0, , 1-21.	1.2	4