Prasad Daggupati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5767056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 2015, 58, 1763-1785.	1.1	1,242
2	Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling and Software, 2016, 85, 129-138.	1.9	149
3	A Recommended Calibration and Validation Strategy for Hydrologic and Water Quality Models. Transactions of the ASABE, 2015, 58, 1705-1719.	1.1	148
4	Crossâ€scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change, 2017, 141, 561-576.	1.7	137
5	Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sensing, 2019, 11, 1589.	1.8	124
6	Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie Basin. Hydrological Processes, 2015, 29, 5307-5320.	1.1	111
7	Sources of uncertainty in hydrological climate impact assessment: a cross-scale study. Environmental Research Letters, 2018, 13, 015006.	2.2	109
8	Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq. Computers and Electronics in Agriculture, 2019, 167, 105041.	3.7	105
9	An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Climatic Change, 2017, 141, 401-417.	1.7	94
10	Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: A case study in the Lake Tana basin. Science of the Total Environment, 2016, 542, 22-35.	3.9	71
11	Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. Journal of Hydrology, 2018, 560, 407-423.	2.3	60
12	Hydrologic and Water Quality Models: Key Calibration and Validation Topics. Transactions of the ASABE, 2015, 58, 1609-1618.	1.1	57
13	Bedload transport rate prediction: Application of novel hybrid data mining techniques. Journal of Hydrology, 2020, 585, 124774.	2.3	55
14	Field-Level Targeting Using SWAT: Mapping Output from HRUs to Fields and Assessing Limitations of GIS Input Data. Transactions of the ASABE, 2011, 54, 501-514.	1.1	48
15	Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios. Science of the Total Environment, 2016, 569-570, 1265-1281.	3.9	46
16	Predicting soil organic matter from cellular phone images under varying soil moisture. Geoderma, 2020, 361, 114020.	2.3	41
17	Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS). Water (Switzerland), 2016, 8, 164.	1.2	40
18	Evaluating ephemeral gullies with a process-based topographic index model. Catena, 2014, 113, 177-186.	2.2	37

PRASAD DAGGUPATI

#	Article	IF	CITATIONS
19	Multi-algorithm comparison to predict soil organic matter and soil moisture content from cell phone images. Geoderma, 2021, 385, 114863.	2.3	37
20	Thinking outside of the lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?. Journal of Great Lakes Research, 2016, 42, 1322-1331.	0.8	34
21	Assessment of site-specific agricultural Best Management Practices in the Upper East River watershed, Wisconsin, using a field-scale SWAT model. Journal of Great Lakes Research, 2019, 45, 619-641.	0.8	32
22	Nozzle Type Effect on Soybean Canopy Penetration. Applied Engineering in Agriculture, 2009, 25, 23-30.	0.3	31
23	IPEAT+: A Built-In Optimization and Automatic Calibration Tool of SWAT+. Water (Switzerland), 2019, 11, 1681.	1.2	29
24	Stochastic Modeling of Groundwater Fluoride Contamination: Introducing Lazy Learners. Ground Water, 2020, 58, 723-734.	0.7	29
25	Largeâ€Scale Fineâ€Resolution Hydrological Modeling Using Parameter Regionalization in the Missouri River Basin. Journal of the American Water Resources Association, 2016, 52, 648-666.	1.0	28
26	Integrating multimedia models to assess nitrogen losses from the Mississippi River basin to the Gulf of Mexico. Biogeosciences, 2018, 15, 7059-7076.	1.3	25
27	Calibration of a Field-Scale Soil and Water Assessment Tool (SWAT) Model with Field Placement of Best Management Practices in Alger Creek, Michigan. Sustainability, 2018, 10, 851.	1.6	25
28	Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins. Climatic Change, 2020, 163, 1143-1164.	1.7	25
29	A comprehensive review of ephemeral gully erosion models. Catena, 2020, 195, 104901.	2.2	24
30	Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions. Agriculture (Switzerland), 2020, 10, 468.	1.4	24
31	Pasture BMP effectiveness using an HRU-based subarea approach in SWAT. Journal of Environmental Management, 2016, 166, 276-284.	3.8	22
32	Assessing the Impact of Site-Specific BMPs Using a Spatially Explicit, Field-Scale SWAT Model with Edge-of-Field and Tile Hydrology and Water-Quality Data in the Eagle Creek Watershed, Ohio. Water (Switzerland), 2018, 10, 1299.	1.2	22
33	Water Security Assessment of the Grand River Watershed in Southwestern Ontario, Canada. Sustainability, 2019, 11, 1883.	1.6	22
34	A comparative evaluation of the continuous and event-based modelling approaches for identifying critical source areas for sediment and phosphorus losses. Journal of Environmental Management, 2021, 277, 111427.	3.8	21
35	Hydrologic and Water Quality Models: Documentation and Reporting Procedures for Calibration, Validation, and Use. Transactions of the ASABE, 2015, 58, 1787-1797.	1.1	20
36	Spatio-Temporal Impacts of Biofuel Production and Climate Variability on Water Quantity and Quality in Upper Mississippi River Basin. Water (Switzerland), 2015, 7, 3283-3305.	1.2	19

PRASAD DAGGUPATI

#	Article	IF	CITATIONS
37	Paying for sediment: Field-scale conservation practice targeting, funding, and assessment using the Soil and Water Assessment Tool. Journal of Soils and Water Conservation, 2013, 68, 41-51.	0.8	17
38	High-Resolution Simulations of Decadal Climate Variability Impacts on Water Yield in the Missouri River Basin with the Soil and Water Assessment Tool (SWAT). Journal of Hydrometeorology, 2016, 17, 2455-2476.	0.7	17
39	Spatial and temporal patterns of precipitation and stream flow variations in Tigris-Euphrates river basin. Environmental Monitoring and Assessment, 2017, 189, 50.	1.3	16
40	Identifying threshold storm events and quantifying potential impacts of climate change on sediment yield in a small upland agricultural watershed of <scp>Ontario</scp> . Hydrological Processes, 2019, 33, 920-931.	1.1	16
41	Development of a Cropland Management Dataset to Support U.S. Swat Assessments. Journal of the American Water Resources Association, 2016, 52, 269-274.	1.0	15
42	Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie. Freshwater Biology, 2020, 65, 1487-1508.	1.2	15
43	Hydrological Responses to Various Land Use, Soil and Weather Inputs in Northern Lake Erie Basin in Canada. Water (Switzerland), 2018, 10, 222.	1.2	14
44	Projecting the effects of agricultural conservation practices on stream fish communities in a changing climate. Science of the Total Environment, 2020, 747, 141112.	3.9	14
45	Climate change impact analysis on watershed using QSWAT. Spatial Information Research, 2018, 26, 253-259.	1.3	12
46	Interactive role of topography and best management practices on N2O emissions from agricultural landscape. Soil and Tillage Research, 2021, 212, 105063.	2.6	12
47	Flood Risk Management with Transboundary Conflict and Cooperation Dynamics in the Kabul River Basin. Water (Switzerland), 2021, 13, 1513.	1.2	11
48	Predicting Ephemeral Gully Location and Length Using Topographic Index Models. Transactions of the ASABE, 2013, , 1427-1440.	1.1	10
49	A Review of Ongoing Advancements in Soil and Water Assessment Tool (SWAT) for Nitrous Oxide (N2o) Modeling. Atmosphere, 2020, 11, 450.	1.0	10
50	Topography Controls N2O Emissions Differently during Early and Late Corn Growing Season. Agronomy, 2021, 11, 187.	1.3	9
51	Advancing model calibration and uncertainty analysis of SWAT models using cloud computing infrastructure: LCC-SWAT. Journal of Hydroinformatics, 2021, 23, 1-15.	1.1	9
52	CoBAGNPS: A toolbox for simulating water and sediment control basin, WASCoB through AGNPS model. Catena, 2019, 179, 49-65.	2.2	8
53	Threshold storm approach for locating phosphorus problem areas: An application in three agricultural watersheds in the Canadian Lake Erie basin. Journal of Great Lakes Research, 2020, 46, 132-143.	0.8	8
54	The Role of Large Dams in a Transboundary Drought Management Co-Operation Framework—Case Study of the Kabul River Basin. Water (Switzerland), 2021, 13, 2628.	1.2	8

PRASAD DAGGUPATI

#	Article	IF	CITATIONS
55	Reconstructing the historical water regime of the contributing basins to the Hawizeh marsh: Implications of water control structures. Science of the Total Environment, 2017, 580, 832-845.	3.9	7
56	Uniform and graded bed-load sediment transport in a degrading channel with non-equilibrium conditions. International Journal of Sediment Research, 2020, 35, 115-124.	1.8	7
57	Development and Field Evaluation of a Low-Cost Wireless Sensor Network System for Hydrological Monitoring of a Small Agricultural Watershed. Open Journal of Civil Engineering, 2018, 08, 166-182.	0.2	7
58	Application of Soil and Water Assessment Tool Model to Estimate Sediment Yield in Kaw Lake. American Journal of Environmental Sciences, 2014, 10, 530-545.	0.3	6
59	Can-GLWS: Canadian Great Lakes Weather Service for the Soil and Water Assessment Tool (SWAT) modelling. Journal of Great Lakes Research, 2021, 47, 242-251.	0.8	6
60	Predicting the Impact of Drainage Ditches upon Hydrology and Sediment Loads Using KINEROS 2 Model: A Case Study in Ontario Canadian Biosystems Engineering / Le Genie Des Biosystems Au Canada, 2018, 60, 1.1-1.15.	0.3	6
61	Modeling Changes to Streamflow, Sediment, and Nutrient Loading from Land Use Changes Due to Potential Natural Gas Development. Journal of the American Water Resources Association, 2017, 53, 1293-1312.	1.0	5
62	Trends and projections of climate extremes in the Black Volta River Basin in West Africa. Theoretical and Applied Climatology, 2019, 137, 513-532.	1.3	5
63	A machine learning approach for spatiotemporal imputation of MODIS chlorophyll-a. International Journal of Remote Sensing, 2021, 42, 7381-7404.	1.3	5
64	Identifying hotspots and representative monitoring locations of field scale N2O emissions from agricultural soils: A time stability analysis. Science of the Total Environment, 2021, 788, 147955.	3.9	5
65	A Modeling Approach for Evaluating Watershed-scale Water Quality Benefits of Vegetative Filter Strip - A Case Study in Ontario. Applied Engineering in Agriculture, 2019, 35, 271-281.	0.3	4
66	Influence of Headwater Reservoirs on Climate Change Impacts and Flood Frequency in the Kabul River Basin. Canadian Journal of Civil Engineering, 0, , .	0.7	3
67	Seasonal agricultural wetlands act as potential source of N2O and CH4 emissions. Catena, 2022, 213, 106184.	2.2	3
68	Difference in the bed load transport of graded and uniform sediments during floods: An experimental investigation. Hydrology Research, 2019, 50, 1645-1664.	1.1	2
69	Spatiotemporal imputation of MODIS land surface temperature using machine learning techniques (Case study: New Mexico's Lower Rio Grande Valley). Remote Sensing Applications: Society and Environment, 2021, 24, 100651.	0.8	2
70	Investigation of Long-Term Climate and Streamflow Patterns in Ontario. American Journal of Climate Change, 2021, 10, 467-489.	0.5	2
71	Mapping runoff generating areas using AGNPS-VSA model. Hydrological Sciences Journal, 2020, 65, 2224-2232.	1.2	1
72	CoBAGNPS: A Toolbox to Estimate Sediment Removal Efficiency of WASCoBs–Pipe Risers and Blind Inlets. Environment and Natural Resources Research, 2019, 8, 84.	0.1	1

#	Article	IF	CITATIONS
73	Targeting BMP Placement using SWAT Sediment Yield Estimates for Field-Scale BMPs. , 2010, , .		Ο
74	Monitoring and Estimating Ephemeral Gully Erosion using Field Measurements and GIS. , 2010, , .		0