
Duncan E Astle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5766233/publications.pdf Version: 2024-02-01

DUNCAN F ASTLE

#	Article	lF	CITATIONS
1	Direct and indirect links between children's socio-economic status and education: pathways via mental health, attitude, and cognition. Current Psychology, 2023, 42, 9637-9651.	1.7	5
2	Maternal mental health mediates links between socioeconomic status and child development. Current Psychology, 2023, 42, 21967-21978.	1.7	1
3	Annual Research Review: The transdiagnostic revolution in neurodevelopmental disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2022, 63, 397-417.	3.1	119
4	A randomized control trial of the effects of home-based online attention training and working memory training on cognition and everyday function in a community stroke sample. Neuropsychological Rehabilitation, 2022, 32, 2603-2627.	1.0	5
5	Segregation and integration of the functional connectome in neurodevelopmentally â€~at risk' children. Developmental Science, 2022, 25, .	1.3	10
6	Testing the specificity of environmental risk factors for developmental outcomes. Child Development, 2022, 93, .	1.7	11
7	Social and emotional characteristics of girls and young women with DDX3X-associated intellectual disability: a descriptive and comparative study. Journal of Autism and Developmental Disorders, 2022, , 1.	1.7	5
8	Statistical power for cluster analysis. BMC Bioinformatics, 2022, 23, .	1.2	115
9	Longitudinal increases in childhood depression symptoms during the COVID-19 lockdown. Archives of Disease in Childhood, 2021, 106, 791-797.	1.0	171
10	Training-dependent transfer within a set of nested tasks. Quarterly Journal of Experimental Psychology, 2021, 74, 174702182199377.	0.6	2
11	Just a phase? Mapping the transition of behavioural problems from childhood to adolescence. Social Psychiatry and Psychiatric Epidemiology, 2021, 56, 821-836.	1.6	14
12	Far and wide: Associations between childhood socio-economic status and brain connectomics. Developmental Cognitive Neuroscience, 2021, 48, 100888.	1.9	17
13	Two Pathways to Self-Harm in Adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, 1491-1500.	0.3	26
14	A generative network model of neurodevelopmental diversity in structural brain organization. Nature Communications, 2021, 12, 4216.	5.8	34
15	Collecting big data with small screens: Group tests of children's cognition with touchscreen tablets are reliable and valid. Behavior Research Methods, 2021, 53, 1515-1529.	2.3	11
16	A transdiagnostic data-driven study of children's behaviour and the functional connectome. Developmental Cognitive Neuroscience, 2021, 52, 101027.	1.9	9
17	Subjective SES is Associated with Children's Neurophysiological Response to Auditory Oddballs. Cerebral Cortex Communications, 2021, 2, tgaa092.	0.7	3
18	Dissociable effects of attention vs working memory training on cognitive performance and everyday functioning following fronto-parietal strokes. Neuropsychological Rehabilitation, 2020, 30, 1092-1114.	1.0	19

DUNCAN E ASTLE

#	Article	IF	CITATIONS
19	Mapping differential responses to cognitive training using machine learning. Developmental Science, 2020, 23, e12868.	1.3	17
20	Functional network dynamics in a neurodevelopmental disorder of known genetic origin. Human Brain Mapping, 2020, 41, 530-544.	1.9	23
21	A Hierarchical Watershed Model of Fluid Intelligence in Childhood and Adolescence. Cerebral Cortex, 2020, 30, 339-352.	1.6	46
22	Beyond the Core-Deficit Hypothesis in Developmental Disorders. Current Directions in Psychological Science, 2020, 29, 431-437.	2.8	79
23	Gene functional networks and autism spectrum characteristics in young people with intellectual disability: a dimensional phenotyping study. Molecular Autism, 2020, 11, 98.	2.6	6
24	Transdiagnostic Brain Mapping in Developmental Disorders. Current Biology, 2020, 30, 1245-1257.e4.	1.8	63
25	STXBP1-associated neurodevelopmental disorder: a comparative study of behavioural characteristics. Journal of Neurodevelopmental Disorders, 2019, 11, 17.	1.5	30
26	Whole-brain white matter organization, intelligence, and educational attainment. Trends in Neuroscience and Education, 2019, 15, 38-47.	1.5	33
27	The cingulum as a marker of individual differences in neurocognitive development. Scientific Reports, 2019, 9, 2281.	1.6	39
28	Remapping the cognitive and neural profiles of children who struggle at school. Developmental Science, 2019, 22, e12747.	1.3	64
29	Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children. Journal of the American Academy of Child and Adolescent Psychiatry, 2018, 57, 252-262.e4.	0.3	53
30	Children's academic attainment is linked to the global organization of the white matter connectome. Developmental Science, 2018, 21, e12662.	1.3	23
31	Differences in brain morphology and working memory capacity across childhood. Developmental Science, 2018, 21, e12579.	1.3	41
32	Cross-frequency Phase–Amplitude Coupling as a Mechanism for Temporal Orienting of Attention in Childhood. Journal of Cognitive Neuroscience, 2018, 30, 594-602.	1.1	25
33	Global and Local Connectivity Differences Converge With Gene Expression in a Neurodevelopmental Disorder of Known Genetic Origin. Cerebral Cortex, 2017, 27, 3806-3817.	1.6	17
34	Language Problems and ADHD Symptoms: How Specific Are the Links?. Brain Sciences, 2016, 6, 50.	1.1	46
35	How common are WM deficits in children with difficulties in reading and mathematics?. Journal of Applied Research in Memory and Cognition, 2016, 5, 384-394.	0.7	66
36	Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability. NeuroImage: Clinical, 2016, 12, 655-665.	1.4	22

DUNCAN E ASTLE

#	Article	IF	CITATIONS
37	Training Working Memory in Childhood Enhances Coupling between Frontoparietal Control Network and Task-Related Regions. Journal of Neuroscience, 2016, 36, 9001-9011.	1.7	36
38	Developmental and individual differences in the precision of visuospatial memory. Cognitive Development, 2016, 39, 1-12.	0.7	15
39	Top–Down Activation of Spatiotopic Sensory Codes in Perceptual and Working Memory Search. Journal of Cognitive Neuroscience, 2016, 28, 996-1009.	1.1	15
40	Electrophysiological measures of resting state functional connectivity and their relationship with working memory capacity in childhood. Developmental Science, 2016, 19, 19-31.	1.3	27
41	Memory load modulates graded changes in distracter filtering. Frontiers in Human Neuroscience, 2015, 8, 1025.	1.0	3
42	Epilepsy, cognitive deficits and neuroanatomy in males with <i><scp>ZDHHC</scp>9</i> mutations. Annals of Clinical and Translational Neurology, 2015, 2, 559-569.	1.7	31
43	The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography. Cerebral Cortex, 2015, 25, 3868-3876.	1.6	27
44	Cognitive Training Enhances Intrinsic Brain Connectivity in Childhood. Journal of Neuroscience, 2015, 35, 6277-6283.	1.7	111
45	Psychopathology and cognitive performance in individuals with membrane-associated guanylate kinase mutations: a functional network phenotyping study. Journal of Neurodevelopmental Disorders, 2015, 7, 8.	1.5	7
46	Semantic Advantage for Learning New Phonological Form Representations. Journal of Cognitive Neuroscience, 2015, 27, 775-786.	1.1	21
47	Distinct neural mechanisms of individual and developmental differences in VSTM capacity. Developmental Psychobiology, 2014, 56, 601-610.	0.9	13
48	Age Group and Individual Differences in Attentional Orienting Dissociate Neural Mechanisms of Encoding and Maintenance in Visual STM. Journal of Cognitive Neuroscience, 2014, 26, 864-877.	1.1	29
49	Orienting Attention Within Visual Shortâ€Term Memory: Development and Mechanisms. Child Development, 2014, 85, 578-592.	1.7	59
50	Modulation of alpha power at encoding and retrieval tracks the precision of visual short-term memory. Journal of Neurophysiology, 2014, 112, 2939-2945.	0.9	16
51	Neural Mechanisms by Which Attention Modulates the Comparison of Remembered and Perceptual Representations. PLoS ONE, 2014, 9, e86666.	1.1	6
52	Directing spatial attention to locations within remembered and imagined mental representations. Frontiers in Human Neuroscience, 2013, 7, 154.	1.0	2
53	Two measures of task-specific inhibition. Quarterly Journal of Experimental Psychology, 2012, 65, 233-251.	0.6	12
54	Neural correlates of changing intention in the human FEF and IPS. Journal of Neurophysiology, 2012, 107, 859-867.	0.9	10

DUNCAN E ASTLE

#	Article	IF	CITATIONS
55	Attentional control constrains visual short-term memory: Insights from developmental and individual differences. Quarterly Journal of Experimental Psychology, 2012, 65, 277-294.	0.6	46
56	Interactions between attention and visual short-term memory (VSTM): What can be learnt from individual and developmental differences?. Neuropsychologia, 2011, 49, 1435-1445.	0.7	57
57	An ERP Analysis of Recognition and Categorization Decisions in a Prototype-Distortion Task. PLoS ONE, 2010, 5, e10116.	1.1	4
58	Subliminally Presented and Stored Objects Capture Spatial Attention. Journal of Neuroscience, 2010, 30, 3567-3571.	1.7	22
59	Spatial selection of features within perceived and remembered objects. Frontiers in Human Neuroscience, 2009, 3, 6.	1.0	38
60	Going from a Retinotopic to a Spatiotopic Coordinate System for Spatial Attention. Journal of Neuroscience, 2009, 29, 3971-3973.	1.7	3
61	Using developmental cognitive neuroscience to study behavioral and attentional control. Developmental Psychobiology, 2009, 51, 107-118.	0.9	55
62	Fractionating the Cognitive Control Required to Bring About a Change in Task: A Dense-sensor Event-related Potential Study. Journal of Cognitive Neuroscience, 2008, 20, 255-267.	1.1	49