List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5766115/publications.pdf Version: 2024-02-01

SAN DING HANG

#	Article	IF	CITATIONS
1	Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. Journal of Materials Science, 2008, 43, 6799-6833.	1.7	582
2	A review of anode materials development in solid oxide fuel cells. Journal of Materials Science, 2004, 39, 4405-4439.	1.7	540
3	Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. International Journal of Hydrogen Energy, 2012, 37, 449-470.	3.8	469
4	Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction. Advanced Materials, 2018, 30, e1706287.	11.1	459
5	A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 418, 199-210.	2.6	407
6	Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries. Nano Letters, 2020, 20, 1252-1261.	4.5	394
7	Nitrogenâ€Ðoped Nanoporous Carbon/Graphene Nanoâ€Sandwiches: Synthesis and Application for Efficient Oxygen Reduction. Advanced Functional Materials, 2015, 25, 5768-5777.	7.8	384
8	Synthesis and Characterization of Platinum Catalysts on Multiwalled Carbon Nanotubes by Intermittent Microwave Irradiation for Fuel Cell Applications. Journal of Physical Chemistry B, 2006, 110, 5343-5350.	1.2	372
9	Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimica Acta, 2008, 53, 2610-2618.	2.6	357
10	A degradation study of Nafion proton exchange membrane of PEM fuel cells. Journal of Power Sources, 2007, 170, 85-92.	4.0	347
11	Chromium deposition and poisoning of cathodes of solid oxide fuel cells – A review. International Journal of Hydrogen Energy, 2014, 39, 505-531.	3.8	319
12	Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells – A review. International Journal of Hydrogen Energy, 2019, 44, 7448-7493.	3.8	287
13	Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2. Applied Catalysis B: Environmental, 2019, 243, 294-303.	10.8	243
14	Photoelectrochemical Synthesis of Ammonia on the Aerophilic-Hydrophilic Heterostructure with 37.8% Efficiency. CheM, 2019, 5, 617-633.	5.8	241
15	Electrocatalytic Activity and Interconnectivity of Pt Nanoparticles on Multiwalled Carbon Nanotubes for Fuel Cells. Journal of Physical Chemistry C, 2009, 113, 18935-18945.	1.5	239
16	Prospects of fuel cell technologies. National Science Review, 2017, 4, 163-166.	4.6	238
17	Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors. Chemical Society Reviews, 2012, 41, 7291.	18.7	234
18	Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti. Electrochemistry Communications, 2007, 9, 2334-2339.	2.3	221

#	Article	IF	CITATIONS
19	Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Progress in Natural Science: Materials International, 2015, 25, 545-553.	1.8	218
20	A Versatile Iron–Tanninâ€Framework Ink Coating Strategy to Fabricate Biomassâ€Derived Iron Carbide/Feâ€Nâ€Carbon Catalysts for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2016, 55, 1355-1359.	7.2	216
21	Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Materials, 2020, 26, 1-22.	9.5	208
22	Unique MOF-derived hierarchical MnO ₂ nanotubes@NiCo-LDH/CoS ₂ nanocage materials as high performance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 12018-12028.	5.2	207
23	PtRu Nanoparticles Supported on 1-Aminopyrene-Functionalized Multiwalled Carbon Nanotubes and Their Electrocatalytic Activity for Methanol Oxidation. Langmuir, 2008, 24, 10505-10512.	1.6	205
24	From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. Carbon, 2017, 116, 490-499.	5.4	188
25	Deposition of Chromium Species at Sr-Doped LaMnO[sub 3] Electrodes in Solid Oxide Fuel Cells. I. Mechanism and Kinetics. Journal of the Electrochemical Society, 2000, 147, 4013.	1.3	184
26	Hydrothermal Synthesis of Metal–Polyphenol Coordination Crystals and Their Derived Metal/Nâ€doped Carbon Composites for Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 12470-12474.	7.2	178
27	Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2011, 36, 10541-10549.	3.8	176
28	Deposition of Cr Species at (La,Sr)(Co,Fe)O[sub 3] Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A127.	1.3	171
29	Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochimica Acta, 2011, 56, 3338-3344.	2.6	170
30	Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media. International Journal of Hydrogen Energy, 2010, 35, 10087-10093.	3.8	168
31	Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. Journal of Power Sources, 2008, 176, 82-89.	4.0	167
32	Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. Advanced Science, 2019, 6, 1802066.	5.6	164
33	Graphene oxide/core–shell structured metal–organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 10182-10189.	5.2	163
34	Review—Materials Degradation of Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2016, 163, F3070-F3083.	1.3	162
35	NiO/Graphene Composite for Enhanced Charge Separation and Collection in p-Type Dye Sensitized Solar Cell. Journal of Physical Chemistry C, 2011, 115, 12209-12215.	1.5	160
36	Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nature Communications, 2018, 9, 3572.	5.8	159

#	Article	IF	CITATIONS
37	A mechanistic study on the activation process of (La, Sr)MnO3 electrodes of solid oxide fuel cells. Solid State Ionics, 2006, 177, 1361-1369.	1.3	158
38	Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide. Small Methods, 2019, 3, 1800440.	4.6	155
39	Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chemical Communications, 2015, 51, 2518-2521.	2.2	151
40	Pd/Pt core–shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochemistry Communications, 2008, 10, 1575-1578.	2.3	150
41	Insight into Proton Transfer in Phosphotungstic Acid Functionalized Mesoporous Silica-Based Proton Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 2014, 136, 4954-4964.	6.6	147
42	Tuning the Electron Localization of Gold Enables the Control of Nitrogenâ€ŧoâ€Ammonia Fixation. Angewandte Chemie - International Edition, 2019, 58, 18604-18609.	7.2	146
43	Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells. Physical Chemistry Chemical Physics, 2011, 13, 6883.	1.3	144
44	Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics, 2008, 179, 1459-1464.	1.3	141
45	HPW/MCMâ€41 Phosphotungstic Acid/Mesoporous Silica Composites as Novel Protonâ€Exchange Membranes for Elevatedâ€īemperature Fuel Cells. Advanced Materials, 2010, 22, 971-976.	11.1	141
46	Metal–polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale, 2017, 9, 5323-5328.	2.8	140
47	Fabrication and Performance of GDC-Impregnated (La,Sr)MnO[sub 3] Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2005, 152, A1398.	1.3	139
48	Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation. Nanotechnology, 2008, 19, 265601.	1.3	138
49	Deposition of Chromium Species at Sr-Doped LaMnO[sub 3] Electrodes in Solid Oxide Fuel Cells II. Effect on O[sub 2] Reduction Reaction. Journal of the Electrochemical Society, 2000, 147, 3195.	1.3	136
50	Self-assembled Nafion–silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells. Electrochemistry Communications, 2007, 9, 2003-2008.	2.3	131
51	Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3â~î^ cathodes of solid oxide fuel cells. Journal of Power Sources, 2009, 194, 275-280.	4.0	131
52	Insight into surface segregation and chromium deposition on La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î} cathodes of solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 11114-11123.	5.2	128
53	Highâ€Performance Perovskite Composite Electrocatalysts Enabled by Controllable Interface Engineering. Small, 2021, 17, e2101573.	5.2	128
54	Activation, microstructure, and polarization of solid oxide fuel cell cathodes. Journal of Solid State Electrochemistry, 2006, 11, 93-102.	1.2	125

#	Article	IF	CITATIONS
55	Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Applied Catalysis B: Environmental, 2015, 163, 96-104.	10.8	124
56	Sintering behavior of Ni/Y2O3-ZrO2cermet electrodes of solid oxide fuel cells. Journal of Materials Science, 2003, 38, 3775-3782.	1.7	123
57	Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Materials Today Advances, 2020, 7, 100072.	2.5	119
58	Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM). Electrochimica Acta, 2007, 52, 3714-3718.	2.6	115
59	Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochemistry Communications, 2007, 9, 2009-2012.	2.3	114
60	Electro-oxidation of methanol, 1-propanol and 2-propanol on Pt and Pd in alkaline medium. Journal of Power Sources, 2008, 177, 67-70.	4.0	114
61	NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. Journal of Power Sources, 2007, 170, 55-60.	4.0	113
62	New anhydrous proton exchange membranes for high-temperature fuel cells based on PVDF–PVP blended polymers. Journal of Materials Chemistry A, 2015, 3, 148-155.	5.2	109
63	Enhanced electrochemical activity of Pt nanowire network electrocatalysts for methanol oxidation reaction of fuel cells. Electrochimica Acta, 2011, 56, 1563-1569.	2.6	108
64	Efficient Reversible Conversion between MoS ₂ and Mo/Na ₂ S Enabled by Graphene‣upported Single Atom Catalysts. Advanced Materials, 2021, 33, e2007090.	11.1	108
65	Rational Design of Agâ€Based Catalysts for the Electrochemical CO ₂ Reduction to CO: A Review. ChemSusChem, 2020, 13, 39-58.	3.6	106
66	Development of (La,Sr)MnO[sub 3]-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2003, 6, A67.	2.2	102
67	Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium. Electrochemistry Communications, 2007, 9, 2760-2763.	2.3	101
68	In-situ evolution of active layers on commercial stainless steel for stable water splitting. Applied Catalysis B: Environmental, 2019, 248, 277-285.	10.8	99
69	A comparative study of CCM and hot-pressed MEAs for PEM fuel cells. Journal of Power Sources, 2007, 170, 140-144.	4.0	95
70	Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells. Electrochimica Acta, 2006, 51, 5721-5730.	2.6	94
71	Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. Journal of Materials Chemistry A, 2016, 4, 4019-4024.	5.2	93
72	A remarkable activity of glycerol electrooxidation on gold in alkaline medium. Electrochimica Acta, 2012, 59, 156-159.	2.6	91

#	Article	IF	CITATIONS
73	A Universal Seeding Strategy to Synthesize Single Atom Catalysts on 2D Materials for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 1906157.	7.8	91
74	Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 3906-3929.	1.7	90
75	GDC-Impregnated (La[sub 0.75]Sr[sub 0.25])(Cr[sub 0.5]Mn[sub 0.5])O[sub 3] Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A850.	1.3	89
76	Pd nanoparticles supported on HPMo-PDDA-MWCNT and their activity for formic acid oxidation reaction of fuel cells. International Journal of Hydrogen Energy, 2011, 36, 8508-8517.	3.8	89
77	Synergistic effect of Pd–Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation. Electrochimica Acta, 2010, 55, 2295-2298.	2.6	88
78	Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochemistry Communications, 2010, 12, 1646-1649.	2.3	88
79	Efficiency and stability of narrow-gap semiconductor-based photoelectrodes. Energy and Environmental Science, 2019, 12, 2345-2374.	15.6	88
80	Fabrication of High-Performance Ni/Y[sub 2]O[sub 3]-ZrO[sub 2] Cermet Anodes of Solid Oxide Fuel Cells by Ion Impregnation. Journal of the Electrochemical Society, 2002, 149, A1175.	1.3	87
81	Early interaction between Fe–Cr alloy metallic interconnect and Sr-doped LaMnO3 cathodes of solid oxide fuel cells. Journal of Materials Research, 2005, 20, 747-758.	1.2	87
82	High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes. Electrochemistry Communications, 2009, 11, 1048-1051.	2.3	87
83	A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35, 12359-12368.	3.8	87
84	Pd/HPW-PDDA-MWCNTs as effective non-Pt electrocatalysts for oxygen reduction reaction of fuel cells. Chemical Communications, 2010, 46, 2058.	2.2	87
85	Ni diffusion in vertical growth of MoS2 nanosheets on carbon nanotubes towards highly efficient hydrogen evolution. Carbon, 2021, 175, 176-186.	5.4	87
86	Chromium deposition and poisoning in dry and humidified air at (La0.8Sr0.2)0.9MnO3+ cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35, 2477-2485.	3.8	86
87	Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat, 2021, 1, 460-481.	7.8	86
88	Performance stability and degradation mechanism of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3â^î^ cathodes under solid oxide fuel cells operation conditions. International Journal of Hydrogen Energy, 2014, 39, 15868-15876.	3.8	85
89	Surface Segregation in Solid Oxide Cell Oxygen Electrodes: Phenomena, Mitigation Strategies and Electrochemical Properties. Electrochemical Energy Reviews, 2020, 3, 730-765.	13.1	84
90	A Function‧eparated Design of Electrode for Realizing Highâ€Performance Hybrid Zinc Battery. Advanced Energy Materials, 2020, 10, 2002992.	10.2	84

#	Article	IF	CITATIONS
91	Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. Journal of Power Sources, 2003, 117, 26-34.	4.0	83
92	Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells. Journal of Materials Chemistry A, 2014, 2, 7637-7655.	5.2	82
93	Polarization-Induced Interface and Sr Segregation of <i>in Situ</i> Assembled La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â[^]î} Electrodes on Y ₂ O ₃ â€"ZrO ₂ Electrolyte of Solid Oxide Fuel Cells. ACS Applied Materials & amp: Interfaces. 2016. 8. 31729-31737.	4.0	82
94	Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Scientific Reports, 2016, 6, 21530.	1.6	82
95	Co9S8–Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting. Electrochimica Acta, 2019, 299, 152-162.	2.6	82
96	GDC-impregnated Ni anodes for direct utilization of methane in solid oxide fuel cells. Journal of Power Sources, 2006, 159, 68-72.	4.0	80
97	Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. Journal of Power Sources, 2008, 185, 179-182.	4.0	80
98	Highly Durable Proton Exchange Membranes for Low Temperature Fuel Cells. Journal of Physical Chemistry B, 2007, 111, 8684-8690.	1.2	79
99	A New Durable Surface Nanoparticlesâ€Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere. Advanced Materials, 2022, 34, e2106379.	11.1	79
100	Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogenâ€Đoped Carbon through N Coordination Environment Engineering. Small, 2022, 18, e2105329.	5.2	78
101	An investigation of shelf-life of strontium doped LaMnO3 materials. Journal of Materials Science, 2000, 35, 2735-2741.	1.7	77
102	Layer-by-layer self-assembly of PDDA/PWA–Nafion composite membranes for direct methanol fuel cells. Chemical Communications, 2010, 46, 1434.	2.2	77
103	Performance and stability of (La,Sr)MnO3–Y2O3–ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions. International Journal of Hydrogen Energy, 2012, 37, 10517-10525.	3.8	77
104	Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Applied Catalysis B: Environmental, 2021, 283, 119660.	10.8	77
105	Deposition of Chromium Species at Sr-Doped LaMnO[sub 3] Electrodes in Solid Oxide Fuel Cells: III. Effect of Air Flow. Journal of the Electrochemical Society, 2001, 148, C447.	1.3	76
106	Lanthanum strontium manganese chromite cathode and anode synthesized by gel-casting for solid oxide fuel cells. Journal of Materials Chemistry, 2007, 17, 2627.	6.7	76
107	Polyelectrolyte-stabilized Pt nanoparticles as new electrocatalysts for low temperature fuel cells. Electrochemistry Communications, 2007, 9, 1613-1618.	2.3	76
108	Syngas production by catalytic partial oxidation of methane over (La0.7A0.3)BO3 (AÂ=ÂBa, Ca, Mg, Sr, and) Tj E	.TQq0 0 0 3.8	rgBT /Overloc 76

Energy, 2013, 38, 13300-13308.

#	Article	IF	CITATIONS
109	A stability study of impregnated LSCF–GDC composite cathodes of solid oxide fuel cells. Journal of Alloys and Compounds, 2013, 578, 37-43.	2.8	76
110	Effect of nitrogen-containing functionalization on the electrocatalytic activity of PtRu nanoparticles supported on carbon nanotubes for direct methanol fuel cells. Applied Catalysis B: Environmental, 2014, 158-159, 140-149.	10.8	76
111	Efficient and Durable Bifunctional Oxygen Catalysts Based on NiFeO@MnO _{<i>x</i>} Core–Shell Structures for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8121-8133.	4.0	76
112	Black magnetic Cu-g-C3N4 nanosheets towards efficient photocatalytic H2 generation and CO2/benzene conversion. Chemical Engineering Journal, 2022, 450, 138030.	6.6	76
113	PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Physical Chemistry Chemical Physics, 2011, 13, 16349.	1.3	75
114	New Undisputed Evidence and Strategy for Enhanced Latticeâ€Oxygen Participation of Perovskite Electrocatalyst through Cation Deficiency Manipulation. Advanced Science, 2022, 9, e2200530.	5.6	75
115	Electrodeposition of Cobalt from Aqueous Chloride Solutions. Journal of the Electrochemical Society, 1990, 137, 3418-3423.	1.3	74
116	Tetrahydrofuran-functionalized multi-walled carbon nanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells. Electrochimica Acta, 2010, 55, 2964-2971.	2.6	74
117	Electrocatalytic Promotion of Palladium Nanoparticles on Hydrogen Oxidation on Ni/GDC Anodes of SOFCs via Spillover. Journal of the Electrochemical Society, 2009, 156, B1022.	1.3	73
118	Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media. Electrochemistry Communications, 2008, 10, 246-249.	2.3	72
119	Novel nano-structured Pd+yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2008, 10, 42-46.	2.3	72
120	Identifying the Intrinsic Relationship between the Restructured Oxide Layer and Oxygen Evolution Reaction Performance on the Cobalt Pnictide Catalyst. Small, 2020, 16, e1906867.	5.2	72
121	WOx/g-C3N4 layered heterostructures with controlled crystallinity towards superior photocatalytic degradation and H2 generation. Carbon, 2020, 156, 488-498.	5.4	71
122	Fe atoms anchored on defective nitrogen doped hollow carbon spheres as efficient electrocatalysts for oxygen reduction reaction. Nano Research, 2021, 14, 1069-1077.	5.8	71
123	Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells. Electrochimica Acta, 2013, 99, 124-132.	2.6	70
124	Direct application of cobaltite-based perovskite cathodes on the yttria-stabilized zirconia electrolyte for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2016, 4, 17678-17685.	5.2	70
125	Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-Î [^] oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells. Journal of Power Sources, 2018, 384, 125-135.	4.0	69
126	Ni clusters-derived 2D/2D layered WOx(MoS2)/Ni-g-C3N4 step-scheme heterojunctions with enhanced photo- and electro-catalytic performance. Journal of Power Sources, 2021, 510, 230420.	4.0	67

#	Article	IF	CITATIONS
127	Fabrication and Performance of Impregnated Ni Anodes of Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2005, 88, 1779-1785.	1.9	66
128	Effect of Carbon Nanotubes on Direct Electron Transfer and Electrocatalytic Activity of Immobilized Glucose Oxidase. ACS Omega, 2018, 3, 667-676.	1.6	66
129	Highly ordered mesoporous Nafion membranes for fuel cells. Chemical Communications, 2011, 47, 3216.	2.2	64
130	Development of Nanostructured and Palladium Promoted (La,Sr)MnO[sub 3]-Based Cathodes for Intermediate-Temperature SOFCs. Electrochemical and Solid-State Letters, 2008, 11, B213.	2.2	63
131	A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells. Journal of Membrane Science, 2013, 427, 101-107.	4.1	63
132	Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes?. Physical Chemistry Chemical Physics, 2015, 17, 31308-31315.	1.3	63
133	Fluorineâ€Doped and Partially Oxidized Tantalum Carbides as Nonprecious Metal Electrocatalysts for Methanol Oxidation Reaction in Acidic Media. Advanced Materials, 2016, 28, 2163-2169.	11.1	63
134	Highly active and stable Er _{0.4} Bi _{1.6} O ₃ decorated La _{0.76} Sr _{0.19} MnO _{3+δ} nanostructured oxygen electrodes for reversible solid oxide cells. Journal of Materials Chemistry A, 2017, 5, 12149-12157.	5.2	63
135	Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells. Electrochimica Acta, 2009, 54, 6954-6958.	2.6	62
136	Highly active and stable (La0.24Sr0.16Ba0.6)(Co0.5Fe0.44Nb0.06)O3â^îr (LSBCFN) cathodes for solid oxide fuel cells prepared by a novel mixing synthesis method. Journal of Materials Chemistry A, 2013, 1, 4871.	5.2	62
137	Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol electrooxidation of direct alcohol fuel cells. Electrochimica Acta, 2009, 54, 6322-6326.	2.6	61
138	Highly chromium contaminant tolerant BaO infiltrated La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î^} cathodes for solid oxide fuel cells. Physical Chemistry Chemical Physics, 2015, 17, 4870-4874.	1.3	61
139	The edge-epitaxial growth of yellow g-C ₃ N ₄ on red g-C ₃ N ₄ nanosheets with superior photocatalytic activities. Chemical Communications, 2021, 57, 3119-3122.	2.2	61
140	Pt-based nanoparticles on non-covalent functionalized carbon nanotubes as effective electrocatalysts for proton exchange membrane fuel cells. RSC Advances, 2014, 4, 46265-46284.	1.7	60
141	Challenges in the development of reversible solid oxide cell technologies: a mini review. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 386-391.	0.8	60
142	Construction of 2D g-C ₃ N ₄ lateral-like homostructures and their photo- and electro-catalytic activities. Chemical Communications, 2019, 55, 1233-1236.	2.2	60
143	Effect of Polarization on the Interface Between (La,Sr)MnO[sub 3] Electrode and Y[sub 2]O[sub 3]-ZrO[sub 2] Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, A115.	2.2	59
144	Nanostructured tungsten carbide/carbon composites synthesized by a microwave heating method as supports of platinum catalysts for methanol oxidation. Journal of Power Sources, 2012, 202, 56-62.	4.0	59

#	Article	IF	CITATIONS
145	Controllable synthesis of graphene supported MnO ₂ nanowires via self-assembly for enhanced water oxidation in both alkaline and neutral solutions. Journal of Materials Chemistry A, 2014, 2, 123-129.	5.2	59
146	A Versatile Iron–Tanninâ€Framework Ink Coating Strategy to Fabricate Biomassâ€Derived Iron Carbide/Feâ€Nâ€Carbon Catalysts for Efficient Oxygen Reduction. Angewandte Chemie, 2016, 128, 1377-1381.	1.6	59
147	Unique Ni Crystalline Core/Ni Phosphide Amorphous Shell Heterostructured Electrocatalyst for Hydrazine Oxidation Reaction of Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 19048-19055.	4.0	59
148	Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. Chemical Engineering Journal, 2021, 406, 126883.	6.6	59
149	Transition metals decorated g-C3N4/N-doped carbon nanotube catalysts for water splitting: A review. Journal of Electroanalytical Chemistry, 2021, 895, 115510.	1.9	59
150	Performance of large-scale anode-supported solid oxide fuel cells with impregnated La0.6Sr0.4Co0.2Fe0.8O3â^îî+Y2O3 stabilized ZrO2 composite cathodes. Journal of Power Sources, 2010, 195, 5201-5205.	4.0	58
151	A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells. Journal of Materials Chemistry, 2011, 21, 6668.	6.7	58
152	A fundamental study of chromium deposition and poisoning at (La0.8Sr0.2)0.95(Mn1â^'xCox)O3±Âδ (0.0≤	ŧ) Ţį ETQq ^ı 3.8	0 0 0 rgBT /0
153	Atomically Dispersed Bimetallic FeNi Catalysts as Highly Efficient Bifunctional Catalysts for Reversible Oxygen Evolution and Oxygen Reduction Reactions. ChemElectroChem, 2019, 6, 3478-3487.	1.7	58
154	One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells. Chemical Communications, 2010, 46, 4351.	2.2	57
155	Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. Electrochimica Acta, 2007, 52, 5304-5311.	2.6	56
156	Chromium Deposition and Poisoning on (La[sub 0.6]Sr[sub 0.4â^'x]Ba[sub x])(Co[sub 0.2]Fe[sub) Tj ETQq0 0 0 r 2008, 155, B1093.	gBT /Over 1.3	lock 10 Tf 50 56
157	Synthesis and characterization of lanthanum silicate apatite by gel-casting route as electrolytes for solid oxide fuel cells. Journal of Power Sources, 2009, 189, 972-981.	4.0	56
158	Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. Energy & Fuels, 2011, 25, 406-414.	2.5	56
159	Carbon-tolerant Ni-based cermet anodes modified by proton conducting yttrium- and ytterbium-doped barium cerates for direct methane solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 21609-21617.	5.2	56
160	Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochimica Acta, 2020, 331, 135395.	2.6	56
161	Highly dispersed MoOx on carbon nanotube as support for high performance Pt catalyst towards methanol oxidation. Chemical Communications, 2011, 47, 8418.	2.2	55
162	Characterization of High-Temperature Proton-Exchange Membranes Based on Phosphotungstic Acid Functionalized Mesoporous Silica Nanocomposites for Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 11854-11863.	1.5	54

#	Article	IF	CITATIONS
163	Enhanced chromium tolerance of La0.6Sr0.4Co0.2Fe0.8O3â^î´ electrode of solid oxide fuel cells by Gd0.1Ce0.9O1.95 impregnation. Electrochemistry Communications, 2013, 37, 84-87.	2.3	54
164	One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 15448-15453.	5.2	54
165	Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration. ACS Applied Materials & Interfaces, 2016, 8, 10293-10301.	4.0	54
166	Performance of GDC-Impregnated Ni Anodes of SOFCs. Electrochemical and Solid-State Letters, 2004, 7, A282.	2.2	53
167	NiO nanoparticles supported on polyethylenimine functionalized CNTs as efficient electrocatalysts for supercapacitor and oxygen evolution reaction. International Journal of Hydrogen Energy, 2014, 39, 20662-20670.	3.8	53
168	Natural Plant Template-Derived Cellular Framework Porous Carbon as a High-Rate and Long-Life Electrode Material for Energy Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 5845-5855.	3.2	53
169	Effect of polarization on the electrode behavior and microstructure of (La,Sr)MnO3 electrodes of solid oxide fuel cells. Journal of Solid State Electrochemistry, 2004, 8, 914-922.	1.2	52
170	Nano-structured PdxPt1â~x/Ti anodes prepared by electrodeposition for alcohol electrooxidation. Electrochimica Acta, 2009, 54, 5486-5491.	2.6	52
171	Nanostructured (Ba,Sr)(Co,Fe)O[sub 3â^î] Impregnated (La,Sr)MnO[sub 3] Cathode for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B1033.	1.3	52
172	Performance and structural stability of Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 nano-structured oxygen electrodes of solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2014, 39, 10349-10358.	3.8	52
173	Chromium deposition and poisoning at La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^î^} oxygen electrodes of solid oxide electrolysis cells. Physical Chemistry Chemical Physics, 2015, 17, 1601-1609.	1.3	52
174	Intrinsic Effect of Carbon Supports on the Activity and Stability of Precious Metal Based Catalysts for Electrocatalytic Alcohol Oxidation in Fuel Cells: A Review. ChemSusChem, 2020, 13, 2484-2502.	3.6	52
175	Toward an Understanding of the Reversible Li-CO ₂ Batteries over Metal–N ₄ -Functionalized Graphene Electrocatalysts. ACS Nano, 2022, 16, 1523-1532.	7.3	52
176	Reasons for the high stability of nano-structured (La,Sr)MnO3 infiltrated Y2O3–ZrO2 composite oxygen electrodes of solid oxide electrolysis cells. Electrochemistry Communications, 2012, 19, 119-122.	2.3	51
177	Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells. Journal of Materials Chemistry A, 2016, 4, 19019-19025.	5.2	51
178	Atomic Ni Species Anchored Nâ€Đoped Carbon Hollow Spheres as Nanoreactors for Efficient Electrochemical CO ₂ Reduction. ChemCatChem, 2019, 11, 6092-6098.	1.8	51
179	Fabrication and Performance of Polymer Electrolyte Fuel Cells by Self-Assembly of Pt Nanoparticles. Journal of the Electrochemical Society, 2005, 152, A1081.	1.3	50
180	Are metal-free pristine carbon nanotubes electrocatalytically active?. Chemical Communications, 2015, 51, 13764-13767.	2.2	50

#	ARTICLE	IF	CITATIONS
181	Characterization and performance of (La,Ba)(Co,Fe)O3 cathode for solid oxide fuel cells with iron–chromium metallic interconnect. Journal of Power Sources, 2008, 180, 695-703.	4.0	49
182	Synthesis and characterization of doped La9ASi6O26.5 (AÂ=ÂCa, Sr, Ba) oxyapatite electrolyte by a water-based gel-casting route. International Journal of Hydrogen Energy, 2011, 36, 6862-6874.	3.8	49
183	Enhanced electrochemical performance and stability of (La,Sr)MnO 3 –(Gd,Ce)O 2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration. International Journal of Hydrogen Energy, 2012, 37, 1301-1310.	3.8	49
184	Thermally and Electrochemically Induced Electrode/Electrolyte Interfaces in Solid Oxide Fuel Cells: An AFM and EIS Study. Journal of the Electrochemical Society, 2015, 162, F1119-F1128.	1.3	49
185	Fabrication and Characterization of Anodeâ€Supported Tubular Solidâ€Oxide Fuel Cells by Slip Casting and Dip Coating Techniques. Journal of the American Ceramic Society, 2009, 92, 302-310.	1.9	48
186	Chromium Deposition and Poisoning at Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ} Cathode of Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2011, 14, B41-B45.	2.2	48
187	Nafion membranes with ordered mesoporous structure and high water retention properties for fuel cell applications. Journal of Materials Chemistry, 2012, 22, 5810.	6.7	48
188	Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-Î′ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells. Journal of Power Sources, 2018, 378, 433-442.	4.0	48
189	Atomically dispersed cobalt on graphitic carbon nitride as a robust catalyst for selective oxidation of ethylbenzene by peroxymonosulfate. Journal of Materials Chemistry A, 2021, 9, 3029-3035.	5.2	48
190	Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells. Journal of Materials Chemistry A, 2015, 3, 1961-1971.	5.2	47
191	Mechanism and Kinetics of Ni-Y ₂ O ₃ -ZrO ₂ Hydrogen Electrode for Water Electrolysis Reactions in Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2016, 163, F106-F114.	1.3	47
192	High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200–250°C. International Journal of Hydrogen Energy, 2018, 43, 22487-22499.	3.8	47
193	Fusiformâ€Shaped gâ€C ₃ N ₄ Capsules with Superior Photocatalytic Activity. Small, 2020, 16, e2003910.	5.2	47
194	Cobalt Single Atoms Embedded in Nitrogenâ€Đoped Graphene for Selective Oxidation of Benzyl Alcohol by Activated Peroxymonosulfate. Small, 2021, 17, e2004579.	5.2	47
195	Reduction of Charge Recombination by an Amorphous Titanium Oxide Interlayer in Layered Graphene/Quantum Dots Photochemical Cells. ACS Applied Materials & Interfaces, 2011, 3, 1940-1945.	4.0	45
196	Enhanced oxygen reduction at Pd catalytic nanoparticles dispersed onto heteropolytungstate-assembled poly(diallyldimethylammonium)-functionalized carbon nanotubes. Physical Chemistry Chemical Physics, 2011, 13, 4400.	1.3	45
197	In Situ Formed Phosphoric Acid/Phosphosilicate Nanoclusters in the Exceptional Enhancement of Durability of Polybenzimidazole Membrane Fuel Cells at Elevated High Temperatures. Journal of the Electrochemical Society, 2017, 164, F1615-F1625.	1.3	45
198	Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells. Nanotechnology, 2008, 19, 455602.	1.3	44

#	Article	IF	CITATIONS
199	Direct electrochemical response of glucose at nickel-doped diamond like carbon thin film electrodes. Journal of Electroanalytical Chemistry, 2009, 627, 51-57.	1.9	44
200	Raman Spectroscopy Study of Chromium Deposition on La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-Î} Cathode of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F687-F693.	1.3	44
201	High Temperature Polymer Electrolyte Membrane Fuel Cells for Integrated Fuel Cell – Methanol Reformer Power Systems: A Critical Review. Advanced Sustainable Systems, 2018, 2, 1700184.	2.7	44
202	Synthesis and characterization of Nafion-stabilized Pt nanoparticles for polymer electrolyte fuel cells. Electrochimica Acta, 2006, 52, 1213-1220.	2.6	43
203	Effect of Strontium Content on Chromium Deposition and Poisoning in Ba1â^'xSrxCo0.8Fe0.2O3â^'Î (0.3 â‰ജ) Tj	ETQq1 1	0.784314 r
204	Highly Stable Srâ€Free Cobaltiteâ€Based Perovskite Cathodes Directly Assembled on a Barrier‣ayerâ€Free Y ₂ O ₃ â€ZrO ₂ Electrolyte of Solid Oxide Fuel Cells. ChemSusChem, 2017, 10, 993-1003.	3.6	43
205	Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 1370-1375.	5.2	43
206	A comparative study of surface segregation and interface of LaO·6SrO·4CoO·2FeO·8O3-δ electrode on GDC and YSZ electrolytes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 2606-2616.	3.8	43
207	Chemical interactions between 3 mol% yttria-zirconia and Sr-doped lanthanum manganite. Journal of the European Ceramic Society, 2003, 23, 1865-1873.	2.8	42
208	Structure and corrosion behavior of platinum/ruthenium/nitrogen doped diamondlike carbon thin films. Journal of Applied Physics, 2009, 106, .	1.1	42
209	Pd-promoted (La,Ca)(Cr,Mn)O3/GDC anode for hydrogen and methane oxidation reactions of solid oxide fuel cells. Solid State Ionics, 2010, 181, 1221-1228.	1.3	42
210	Anhydrous Phosphoric Acid Functionalized Sintered Mesoporous Silica Nanocomposite Proton Exchange Membranes for Fuel Cells. ACS Applied Materials & Interfaces, 2013, 5, 11240-11248.	4.0	42
211	A class of transition metal-oxide@MnOx core–shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 13881-13889.	5.2	42
212	Hydrothermal Synthesis of Metal–Polyphenol Coordination Crystals and Their Derived Metal/Nâ€doped Carbon Composites for Oxygen Electrocatalysis. Angewandte Chemie, 2016, 128, 12658-12662.	1.6	42
213	Heterostructured Ni(OH) ₂ /Ni ₃ S ₂ Supported on Ni Foam as Highly Efficient and Durable Bifunctional Electrodes for Overall Water Electrolysis. Energy & Fuels, 2019, 33, 12052-12062.	2.5	42
214	Interaction between metallic interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel cells. Journal of the European Ceramic Society, 2006, 26, 3253-3264.	2.8	41
215	Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Applied Catalysis B: Environmental, 2011, 103, 311-317.	10.8	41
216	Chromium deposition and poisoning of La _{0.8} Sr _{0.2} MnO ₃ oxygen electrodes of solid oxide electrolysis cells. Faraday Discussions, 2015, 182, 457-476.	1.6	41

#	Article	IF	CITATIONS
217	A highly active and stable La0.5Sr0.5Ni0.4Fe0.6O3-Ĩ´ perovskite electrocatalyst for oxygen evolution reaction in alkaline media. Electrochimica Acta, 2017, 246, 997-1003.	2.6	41
218	A FIB-STEM Study of Strontium Segregation and Interface Formation of Directly Assembled La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-Î} Cathode on Y ₂ O ₃ -ZrO ₂ Electrolyte of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F417-F429.	1.3	41
219	Interaction Between Fe–Cr Metallic Interconnect and (La,Sr)MnO[sub 3]â^•YSZ Composite Cathode of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A1511.	1.3	40
220	Self-Assembled Pt/Mesoporous Silicaâ^'Carbon Electrocatalysts for Elevated-Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of Physical Chemistry C, 2008, 112, 19748-19755.	1.5	40
221	Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells. Physical Chemistry Chemical Physics, 2011, 13, 10249.	1.3	40
222	One-Pot Synthesis of Metal–Carbon Nanotubes Network Hybrids as Highly Efficient Catalysts for Oxygen Evolution Reaction of Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 10089-10098.	4.0	40
223	Synthesis of LaCoO3 nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells. Solid State Ionics, 2008, 179, 282-289.	1.3	39
224	Pd-Promoted La[sub 0.75]Sr[sub 0.25]Cr[sub 0.5]Mn[sub 0.5]O[sub 3]/YSZ Composite Anodes for Direct Utilization of Methane in SOFCs. Journal of the Electrochemical Society, 2008, 155, B811.	1.3	39
225	Development of (Gd,Ce)O[sub 2]-Impregnated (La,Sr)MnO[sub 3] Anodes of High Temperature Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2010, 157, P89.	1.3	39
226	Sulfur Deposition and Poisoning of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-Î} Cathode Materials of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F1133-F1139.	1.3	39
227	Effect of temperature on the chromium deposition and poisoning of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes of solid oxide fuel cells. Electrochimica Acta, 2014, 139, 173-179.	2.6	39
228	Carbonâ€Nanotubesâ€Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity. ChemSusChem, 2015, 8, 2956-2966.	3.6	39
229	Electrode/electrolyte interface and interface reactions of solid oxide cells: Recent development and advances. Progress in Natural Science: Materials International, 2021, 31, 341-372.	1.8	39
230	Mnâ€Stabilised Microstructure and Performance of Pdâ€impregnated YSZ Cathode for Intermediate Temperature Solid Oxide Fuel Cells. Fuel Cells, 2009, 9, 636-642.	1.5	38
231	Effect of Pd-impregnation on performance, sulfur poisoning and tolerance of Ni/GDC anode of solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 10299-10310.	3.8	38
232	A model for the delamination kinetics of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2012, 37, 13914-13920.	3.8	38
233	Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: a review. Materials Today Energy, 2022, 23, 100904.	2.5	38
234	Thermoreversible micellization and gelation of a blend of pluronic polymers. Polymer, 2008, 49, 1952-1960.	1.8	37

#	Article	IF	CITATIONS
235	Development of Cr-Tolerant Cathodes of Solid Oxide Fuel Cells. Electrochemical and Solid-State Letters, 2008, 11, B42.	2.2	37
236	Interaction between (La, Sr)MnO3 cathode and Ni–Mo–Cr metallic interconnect with suppressed chromium vaporization for solid oxide fuel cells. International Journal of Hydrogen Energy, 2009, 34, 5737-5748.	3.8	37
237	Redox behavior of supported Pd particles and its effect on oxygen reduction reaction in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196, 153-158.	4.0	37
238	Pd-YSZ composite cathodes for oxygen reduction reaction of intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 7670-7676.	3.8	37
239	Phosphoric acid functionalized pre-sintered meso-silica for high temperature proton exchange membrane fuel cells. Chemical Communications, 2013, 49, 4655.	2.2	37
240	Vertically aligned MoS ₂ nanosheets on N-doped carbon nanotubes with NiFe alloy for overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 3578-3587.	3.0	37
241	Transition Behavior for O[sub 2] Reduction Reaction on (La,Sr)MnO[sub 3]â^•YSZ Composite Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A2245.	1.3	36
242	Advancement toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatures. Research, 2020, 2020, 9089405.	2.8	36
243	Reactive Deposition of Cobalt Electrodes: I . Experimental. Journal of the Electrochemical Society, 1990, 137, 3374-3380.	1.3	35
244	Sinterability and conductivity of barium doped aluminium lanthanum oxyapatite La9.5Ba0.5Si5.5Al0.5O26.5 electrolyte of solid oxide fuel cells. Journal of Alloys and Compounds, 2012, 523, 127-133.	2.8	35
245	Effect of Boron Deposition and Poisoning on the Surface Exchange Properties of LSCF Electrode Materials of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F682-F686.	1.3	35
246	Highly ordered and periodic mesoporous Nafion membranes via colloidal silica mediated self-assembly for fuel cells. Chemical Communications, 2013, 49, 6537.	2.2	35
247	Photo-chemical property evolution of superior thin g-C3N4 nanosheets with their crystallinity and Pt deposition. International Journal of Hydrogen Energy, 2020, 45, 21523-21531.	3.8	35
248	A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells. Nano Energy, 2021, 80, 105534.	8.2	35
249	Homogeneous and Heterogeneous Catalytic Reactions in Cobalt Oxide/Graphite Air Electrodes: II . Homogeneous Role of Co(II) Ions during Oxygen Reduction on Electrodes. Journal of the Electrochemical Society, 1990, 137, 764-769.	1.3	34
250	Oxygen reduction on strontium-doped LaMnO3 cathodes in the absence and presence of an iron–chromium alloy interconnect. Journal of Power Sources, 2006, 162, 1043-1052.	4.0	34
251	Methanol crossover reduction by Nafion modification via layer-by-layer self-assembly techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 49-57.	2.3	34
252	Co-Deposition and Poisoning of Chromium and Sulfur Contaminants on La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-δ} Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2015, 162, F507-F512.	1.3	34

#	Article	IF	CITATIONS
253	Amino-functionalized mesoporous silica based polyethersulfone–polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells. RSC Advances, 2016, 6, 86575-86585.	1.7	34
254	Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future. Materials Reports Energy, 2021, 1, 100003.	1.7	34
255	Layered graphitic carbon nitride: nano-heterostructures, photo/electro-chemical performance and trends. Journal of Nanostructure in Chemistry, 2022, 12, 669-691.	5.3	34
256	Homogeneous and Heterogeneous Catalytic Reactions in Cobalt Oxide/Graphite Air Electrodes: I . Chemical Kinetics of Peroxide Decomposition by Co(II) Ions in Alkaline Solutions. Journal of the Electrochemical Society, 1990, 137, 759-764.	1.3	33
257	Reactive Deposition of Cobalt Electrodes: III . Role of Anions. Journal of the Electrochemical Society, 1990, 137, 3387-3393.	1.3	33
258	(La0.8Sr0.2)0.9MnO3–Gd0.2Ce0.8O1.9 composite cathodes prepared from (Gd, Ce)(NO3) x -modified (La0.8Sr0.2)0.9MnO3 for intermediate-temperature solid oxide fuel cells. Journal of Solid State Electrochemistry, 2006, 10, 339-347.	1.2	33
259	Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells. Electrochimica Acta, 2010, 55, 7652-7658.	2.6	33
260	Ag decorated (Ba,Sr)(Co,Fe)O3 cathodes for solid oxide fuel cells prepared by electroless silver deposition. International Journal of Hydrogen Energy, 2013, 38, 2413-2420.	3.8	33
261	A 3D Multifunctional Architecture for Lithium–Sulfur Batteries with High Areal Capacity. Small Methods, 2018, 2, 1800067.	4.6	33
262	Horizontally growth of WS2/WO3 heterostructures on crystalline g-C3N4 nanosheets towards enhanced photo/electrochemical performance. Journal of Nanostructure in Chemistry, 2021, 11, 367-380.	5.3	33
263	Reactive Deposition of Cobalt Electrodes: V . Mechanistic Studies of Oxygen Reduction in Unbuffered Neutral Solutions Saturated with Oxygen. Journal of the Electrochemical Society, 1991, 138, 3599-3605.	1.3	32
264	Self assembled 12-tungstophosphoric acid–silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells. Dalton Transactions, 2011, 40, 5220.	1.6	32
265	Water uptake in the hydrophilic poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) solid-contact of all-solid-state polymeric ion-selective electrodes. Analyst, The, 2011, 136, 3252.	1.7	32
266	Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F301-F308.	1.3	32
267	Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14155-14162.	5.2	32
268	Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions. International Journal of Hydrogen Energy, 2016, 41, 1419-1431.	3.8	32
269	Tuning the Electrochemical Property of the Ultrafine Metalâ€oxide Nanoclusters by Iron Phthalocyanine as Efficient Catalysts for Energy Storage and Conversion. Energy and Environmental Materials, 2019, 2, 5-17.	7.3	32
270	Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes. Journal of Materials Science Letters, 2001, 20, 695-697.	0.5	31

#	ARTICLE	IF	CITATIONS
271	Impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2 infiltrated (La,Sr)MnO3 cathodes of solid oxide fuel cells. Electrochemistry Communications, 2012, 23, 129-132.	2.3	31
272	Significant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes. Chemical Communications, 2014, 50, 13732-13734.	2.2	31
273	In Situ Formation of Er0.4Bi1.6O3 Protective Layer at Cobaltite Cathode/Y2O3–ZrO2 Electrolyte Interface under Solid Oxide Fuel Cell Operation Conditions. ACS Applied Materials & Interfaces, 2018, 10, 40549-40559.	4.0	31
274	Modification of Nafionâ,,¢ membrane to reduce methanol crossover via self-assembled Pd nanoparticles. Materials Letters, 2005, 59, 3766-3770.	1.3	30
275	Electrooxidation of Methanol and Ethylene Glycol Mixture on Platinum and Palladium in Alkaline Medium. Fuel Cells, 2012, 12, 677-682.	1.5	30
276	Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F183-F190.	1.3	30
277	New zinc and bismuth doped glass sealants with substantially suppressed boron deposition and poisoning for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 18655-18665.	5.2	30
278	Self-assembled CeO2 on carbon nanotubes supported Au nanoclusters as superior electrocatalysts for glycerol oxidation reaction of fuel cells. Electrochimica Acta, 2016, 190, 817-828.	2.6	30
279	Self-assembled membrane-electrode-assembly of polymer electrolyte fuel cells. Electrochemistry Communications, 2005, 7, 119-124.	2.3	29
280	Characterization of doped La0.7A0.3Cr0.5Mn0.5O3â^ (A = Ca, Sr, Ba) electrodes for solid oxide fuel cells. Solid State Ionics, 2009, 180, 1076-1082.	1.3	29
281	Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels. International Journal of Hydrogen Energy, 2012, 37, 15301-15310.	3.8	29
282	Feasibility of Direct Utilization of Biomass Gasification Product Gas Fuels in Tubular Solid Oxide Fuel Cells for On-Site Electricity Generation. Energy & Fuels, 2016, 30, 1849-1857.	2.5	29
283	Pd nanoparticles assembled on Ni- and N-doped carbon nanotubes towards superior electrochemical activity. International Journal of Hydrogen Energy, 2021, 46, 2065-2074.	3.8	29
284	Performance and stability of La0.8Sr0.2MnO3 cathode promoted with palladium based catalysts in solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509, 4781-4787.	2.8	28
285	Correlation between proton conductivity, thermal stability and structural symmetries in novel HPW-meso-silica nanocomposite membranes and their performance in direct methanol fuel cells. Journal of Membrane Science, 2012, 397-398, 92-101.	4.1	28
286	Cr deposition on porous La0.6Sr0.4Co0.2Fe0.8O3â^î^relectrodes of solid oxide cells under open circuit condition. Solid State Ionics, 2015, 281, 29-37.	1.3	28
287	First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells. Applied Catalysis B: Environmental, 2021, 284, 119717.	10.8	28
288	BaZr 0.1 Ce 0.7 Y 0.1 Yb 0.1 O 3â^'î´ as highly active and carbon tolerant anode for direct hydrocarbon solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 15975-15981.	3.8	27

#	Article	IF	CITATIONS
289	Feasibility of tubular solid oxide fuel cells directly running on liquid biofuels. Chemical Engineering Science, 2016, 154, 108-118.	1.9	27
290	Dye functionalized carbon nanotubes for photoelectrochemical water splitting – role of inner tubes. Journal of Materials Chemistry A, 2016, 4, 2473-2483.	5.2	27
291	Controlling Mn Emission in CsPbCl ₃ Nanocrystals via Ion Exchange toward Enhanced and Tunable White Photoluminescence. Journal of Physical Chemistry C, 2020, 124, 27032-27039.	1.5	27
292	Active sites engineering via tuning configuration between graphitic-N and thiophenic-S dopants in one-step synthesized graphene nanosheets for efficient water-cycled electrocatalysis. Chemical Engineering Journal, 2021, 416, 129096.	6.6	27
293	NiCo-layered double hydroxide/g-C3N4 heterostructures with enhanced adsorption capacity and photoreduction of Cr(VI). Applied Surface Science, 2021, 556, 149772.	3.1	27
294	Homogeneous and Heterogeneous Catalytic Reactions in Cobalt Oxide/Graphite Air Electrodes: III . Deposition of Cobalt Oxide Catalysts onto Graphite Electrodes for Oxygen Reduction. Journal of the Electrochemical Society, 1990, 137, 3442-3446.	1.3	26
295	An Electrochemical Method to Assess the Chromium Volatility of Chromia-Forming Metallic Interconnect for SOFCs. Journal of the Electrochemical Society, 2006, 153, A2120.	1.3	26
296	Optimization of electrical conductivity of LaCrO3 through doping: A combined study of molecular modeling and experiment. Applied Physics Letters, 2007, 90, 044109.	1.5	26
297	Preparation, Electrical Conductivity, and Thermal Expansion Behavior of Dense Nd _{1â^'<i>x</i>} Ca <i>_x</i> CrO ₃ Solid Solutions. Journal of the American Ceramic Society, 2009, 92, 2259-2264.	1.9	26
298	High performance nanostructured bismuth oxide–cobaltite as a durable oxygen electrode for reversible solid oxide cells. Journal of Materials Chemistry A, 2018, 6, 6510-6520.	5.2	26
299	Synergistic effects of temperature and polarization on Cr poisoning of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â~î^} solid oxide fuel cell cathodes. Journal of Materials Chemistry A, 2019, 7, 9253-9262.	5.2	26
300	Precursor modulated active sites of nitrogen doped graphene-based carbon catalysts via one-step pyrolysis method for the enhanced oxygen reduction reaction. Electrochimica Acta, 2021, 370, 137712.	2.6	26
301	Identification of the hydrogen utilization pathway for the electrocatalytic hydrogenation of phenol. Science China Chemistry, 2021, 64, 1586-1595.	4.2	26
302	A Comparative Study of Fabrication and Performance of Ni/3 mol % Y[sub 2]O[sub 3]-ZrO[sub 2] and Ni/8 mol % Y[sub 2]O[sub 3]-ZrO[sub 2] Cermet Electrodes. Journal of the Electrochemical Society, 2003, 150, E548.	1.3	25
303	Improved Performance of Direct Methanol Fuel Cells with Tungsten Carbide Promoted Ptâ^•C Composite Cathode Electrocatalyst. Electrochemical and Solid-State Letters, 2006, 9, A368.	2.2	25
304	A fundamental study of infiltrated CeO2 and (Gd,Ce)O2 nanoparticles on the electrocatalytic activity of Pt cathodes of solid oxide fuel cells. Solid State Ionics, 2013, 233, 87-94.	1.3	25
305	In situ assembled La _{0.8} Sr _{0.2} MnO ₃ cathodes on a Y ₂ O ₃ –ZrO ₂ electrolyte of solid oxide fuel cells – interface and electrochemical activity. RSC Advances, 2016, 6, 99211-99219.	1.7	25
306	Significantly enhanced performance of direct methanol fuel cells at elevated temperatures. Journal of Power Sources, 2020, 450, 227620.	4.0	25

#	Article	IF	CITATIONS
307	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	15.6	25
308	Reactive Deposition of Cobalt Electrodes: II . Role of Bubbling Oxygen. Journal of the Electrochemical Society, 1990, 137, 3381-3386.	1.3	24
309	Reactive Deposition of Cobalt Electrodes: IV . Alkaline Water Electrolysis. Journal of the Electrochemical Society, 1991, 138, 1216-1222.	1.3	24
310	Synthesis and Performance of (La[sub 0.75]Sr[sub 0.25])[sub 1â^'x](Cr[sub 0.5]Mn[sub 0.5])O[sub 3] Cathode Powders of Solid Oxide Fuel Cells by Gel-Casting Technique. Journal of the Electrochemical Society, 2007, 154, B577.	1.3	24
311	Characterization and evaluation of La0.8 Sr0.2Co0.8 Ni0.2O3-Î′ prepared by a polymer-assisted combustion synthesis as a cathode material for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2009, 34, 6845-6851.	3.8	24
312	Performance degradation of SmBaCo2O5+Î′ cathode induced by chromium deposition for solid oxide fuel cells. Electrochimica Acta, 2015, 174, 327-331.	2.6	24
313	An ordered structured cathode based on vertically aligned Pt nanotubes for ultra-low Pt loading passive direct methanol fuel cells. Electrochimica Acta, 2017, 252, 541-548.	2.6	24
314	Self-Assembly of PDDA-Pt Nanoparticleâ^•Nafion Membranes for Direct Methanol Fuel Cells. Electrochemical and Solid-State Letters, 2005, 8, A574.	2.2	23
315	Identification of oxygen reduction processes at (La,Sr)MnO3 electrode/La9.5Si6O26.25 apatite electrolyte interface of solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 2421-2431.	3.8	23
316	Synthesis and characterization of calcium and iron co-doped lanthanum silicate oxyapatites by sol–gel process for solid oxide fuel cells. Journal of Power Sources, 2015, 293, 806-814.	4.0	23
317	Octa(aminophenyl)silsesquioxane derived nitrogen-doped well-defined nanoporous carbon materials: Synthesis and application for supercapacitors. Electrochimica Acta, 2016, 194, 143-150.	2.6	23
318	Effect of SO ₂ Poisoning on the Electrochemical Activity of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-δ} Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F514-F524.	1.3	23
319	Pt nanoparticles embedded spine-like g-C ₃ N ₄ nanostructures with superior photocatalytic activity for H ₂ generation and CO ₂ reduction. Nanotechnology, 2021, 32, 175401.	1.3	23
320	Lanthanum Strontium Manganite Powders Synthesized by Gel-Casting for Solid Oxide Fuel Cell Cathode Materials. Journal of the American Ceramic Society, 2007, 90, 1406-1411.	1.9	22
321	Effect of Sr and Al or Fe co-doping on the sinterability and conductivity of lanthanum silicate oxyapatite electrolytes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 19093-19101.	3.8	22
322	Comprehensive strategy to design highly ordered mesoporous Nafion membranes for fuel cells under low humidity conditions. Journal of Materials Chemistry A, 2014, 2, 20578-20587.	5.2	22
323	Core–Shell Structured PtRuCo x Nanoparticles on Carbon Nanotubes as Highly Active and Durable Electrocatalysts for Direct Methanol Fuel Cells. Electrochimica Acta, 2015, 177, 217-226.	2.6	22
324	Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells. ACS Applied Materials & Interfaces, 2017, 9, 31922-31930.	4.0	22

#	Article	IF	CITATIONS
325	The Structure–Activity Relationship in Membranes for Vanadium Redox Flow Batteries. Advanced Sustainable Systems, 2019, 3, 1900020.	2.7	22
326	Effects of phosphotungstic acid on performance of phosphoric acid doped polyethersulfone-polyvinylpyrrolidone membranes for high temperature fuel cells. International Journal of Hydrogen Energy, 2021, 46, 11104-11114.	3.8	22
327	Novel graphene-like nanosheet supported highly active electrocatalysts with ultralow Pt loadings for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 16898-16904.	5.2	21
328	Placement of Reference Electrode, Electrolyte Thickness and Three-Electrode Cell Configuration in Solid Oxide Fuel Cells: A Brief Review and Update on Experimental Approach. Journal of the Electrochemical Society, 2017, 164, F834-F844.	1.3	21
329	A FIB-STEM Study of La _{0.8} Sr _{0.2} MnO ₃ Cathode and Y ₂ O ₃ -ZrO ₂ /Gd ₂ O ₃ -CeO ₂ Electrolyt Interfaces of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F1437-F1447.	e 1. 3	21
330	Dependence of cell resistivity on electrolyte thickness in solid oxide fuel cells. Journal of Power Sources, 2008, 183, 595-599.	4.0	20
331	Study on the Cr deposition and poisoning phenomenon at (La 0.6 Sr 0.4)(Co 0.2 Fe 0.8)O 3â~δ electrode of solid oxide fuel cells by transmission X-ray microscopy. International Journal of Hydrogen Energy, 2014, 39, 15728-15734.	3.8	20
332	Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity. Journal of Colloid and Interface Science, 2016, 469, 25-30.	5.0	20
333	Unusual synergetic effect of nickel single atoms on the electrocatalytic activity of palladium for alcohol oxidation reactions in alkaline media. Chemical Communications, 2018, 54, 12404-12407.	2.2	20
334	Accelerating effect of polarization on electrode/electrolyte interface generation and electrocatalytic performance of Er0.4Bi1.6O3 decorated Sm0.95CoO3-δ cathodes. Journal of Power Sources, 2020, 465, 228281.	4.0	20
335	Vacuum-assisted electroless copper plating on Ni/(Sm,Ce)O2 anodes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 7661-7669.	3.8	19
336	Performance and stability of nano-structured Pd and Pd0.95M0.05 (MÂ=ÂMn, Co, Ce, and Gd) infiltrated Y2O3–ZrO2 oxygen electrodes of solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2013, 38, 16569-16578.	3.8	19
337	Effect of Volatile Boron Species on the Microstructure and Composition of (La,Sr)MnO3and (La,Sr)(Co,Fe)O3Cathode Materials of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F1033-F1039.	1.3	19
338	Enhanced activity and stability of core–shell structured PtRuNi electrocatalysts for direct methanol fuel cells. International Journal of Hydrogen Energy, 2016, 41, 1935-1943.	3.8	19
339	One-Pot Pyrolysis Method to Fabricate Carbon Nanotube Supported Ni Single-Atom Catalysts with Ultrahigh Loading. ACS Applied Energy Materials, 0, , .	2.5	19
340	Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells. Solid State Ionics, 2018, 325, 176-188.	1.3	19
341	Acid Pretreatment to Enhance Proton Transport of a Polysulfoneâ€Polyvinylpyrrolidone Membrane for Application in Vanadium Redox Flow Batteries. ChemPlusChem, 2018, 83, 909-914.	1.3	19
342	Combined Cr and S poisoning of La0.8Sr0.2MnO3-δ (LSM) cathode of solid oxide fuel cells. Electrochimica Acta, 2019, 312, 202-212.	2.6	19

#	Article	IF	CITATIONS
343	A La0.8Sr0.2MnO3/La0.6Sr0.4Co0.2Fe0.8O3â~'δ core–shell structured cathode by a rapid sintering process for solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42, 7246-7251.	3.8	18
344	Iron Oxide Nanoclusters Incorporated into Iron Phthalocyanine as Highly Active Electrocatalysts for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 475-483.	1.8	18
345	Cyclic polarization enhances the operating stability of La0.57Sr0.38Co0.18Fe0.72Nb0.1O3-δoxygen electrode of reversible solid oxide cells. Journal of Power Sources, 2018, 404, 73-80.	4.0	18
346	Electrochemistry-Assisted Photoelectrochemical Reduction of Nitrogen to Ammonia. Journal of Physical Chemistry C, 2021, 125, 23041-23049.	1.5	18
347	Developing an ultrafine Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for efficient solid oxide fuel cells. Ceramics International, 2022, 48, 11419-11427.	2.3	18
348	Polarization Promoted Chemical Reaction between Ba0.5Sr0.5Co0.8Fe0.2O3-δCathode and Ceria Based Electrolytes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2012, 159, F794-F798.	1.3	17
349	Large-scale and Rapid Synthesis of Disk-Shaped and Nano-Sized Graphene. Scientific Reports, 2013, 3, 2144.	1.6	17
350	Chemical Compatibility between Boron Oxides and Electrolyte and Cathode Materials of Solid Oxide Fuel Cells. Fuel Cells, 2013, 13, 1101-1108.	1.5	17
351	Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F1163-F1170.	1.3	17
352	A new, high electrochemical activity and chromium tolerant cathode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 15622-15631.	3.8	17
353	Structurally confined ultrafine NiO nanoparticles on graphene as a highly efficient and durable electrode material for supercapacitors. RSC Advances, 2016, 6, 51356-51366.	1.7	17
354	Synthesis of Nitrogenâ€Ðoped Porous Carbon Nanocubes as a Catalyst Support for Methanol Oxidation. ChemCatChem, 2016, 8, 1901-1904.	1.8	17
355	Mechanism and Kinetics of SO ₂ Poisoning on the Electrochemical Activity of La _{0.8} Sr _{0.2} MnO ₃ Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2016, 163, F771-F780.	1.3	17
356	Positive Effect of Incorporating Er _{0.4} Bi _{1.6} O ₃ on the Performance and Stability of La ₂ NiO _{4+Î} Cathode. Journal of the Electrochemical Society, 2019, 166, F796-F804.	1.3	17
357	Synthesis of PDDA–Pt nanoparticles for the self-assembly of electrode/Nafion membrane interface of polymer electrolyte fuel cells. Journal of Power Sources, 2006, 159, 55-58.	4.0	16
358	Porous Ni–Fe alloys as anode support for intermediate temperature solid oxide fuel cells: I. Fabrication, redox and thermal behaviors. Journal of Power Sources, 2015, 277, 474-479.	4.0	16
359	Highly ordered 3D macroporous scaffold supported Pt/C oxygen electrodes with superior gas-proton transportation properties and activities for fuel cells. Journal of Materials Chemistry A, 2015, 3, 15001-15007.	5.2	16
360	Effect of Pd doping on the activity and stability of directly assembled La0.95Co0.19Fe0.76Pd0.05O3-δ cathodes of solid oxide fuel cells. Solid State Ionics, 2018, 316, 38-46.	1.3	16

#	Article	IF	CITATIONS
361	Nanocatalysts anchored on nanofiber support for high syngas production via methane partial oxidation. Applied Catalysis A: General, 2018, 565, 119-126.	2.2	16
362	Bright and tunable photoluminescence from the assembly of red g-C3N4 nanosheets. Journal of Luminescence, 2021, 235, 118055.	1.5	16
363	Activation of Transition Metal (Fe, Co and Ni)â€Oxide Nanoclusters by Nitrogen Defects in Carbon Nanotube for Selective CO ₂ Reduction Reaction. Energy and Environmental Materials, 2023, 6, .	7.3	16
364	Development of intertwined nanostructured multi-phase air electrodes for efficient and durable reversible solid oxide cells. Applied Catalysis B: Environmental, 2022, 305, 121056.	10.8	16
365	Reactive Deposition of Cobalt Electrodes: VI . Mechanistic Studies in the Presence of Dissolved Oxygen—The Colloid Layer Model. Journal of the Electrochemical Society, 1992, 139, 60-66.	1.3	15
366	Origin of low frequency inductive impedance loops of O 2 reduction reaction of solid oxide fuel cells. Solid State Ionics, 2016, 291, 33-41.	1.3	15
367	Effect of Gd2O3 doping on structure and boron volatility of borosilicate glass sealants in solid oxide fuel cells—A study on the La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode. Journal of Power Sources, 2018, 383, 34-41.	4.0	15
368	Sulphur poisoning of solid oxide electrolysis cell anodes. Electrochimica Acta, 2018, 269, 188-195.	2.6	15
369	Active, durable bismuth oxide-manganite composite oxygen electrodes: Interface formation induced by cathodic polarization. Journal of Power Sources, 2018, 397, 16-24.	4.0	15
370	Facile co-synthesis and utilization of ultrafine and highly active PrBa0.8Ca0.2Co2O5+δ-Gd0.2Ce0.8O1.9 composite cathodes for solid oxide fuel cells. Electrochimica Acta, 2022, 403, 139673.	2.6	15
371	Guidelines for Stable Operation of a Polymer Electrolyte Fuel Cell with Self-Humidifying Membrane Electrolyte Assembly. Journal of the Electrochemical Society, 2007, 154, B486.	1.3	14
372	Future prospects for the design of â€~state-of-the-art' solid oxide fuel cells. JPhys Energy, 2020, 2, 031001.	2.3	14
373	Controlled Oneâ€pot Synthesis of Nickel Single Atoms Embedded in Carbon Nanotube and Graphene Supports with High Loading. ChemNanoMat, 2020, 6, 1063-1074.	1.5	14
374	Pt clusters embedded in g-C3N4 nanosheets to form Z-scheme heterostructures with enhanced photochemical performance. Surfaces and Interfaces, 2021, 27, 101450.	1.5	14
375	Functionalized mesoporous materials as new class high temperature proton exchange membranes for fuel cells. Solid State Ionics, 2014, 262, 307-312.	1.3	13
376	A Fundamental Study of Boron Deposition and Poisoning of La _{0.8} Sr _{0.2} MnO ₃ Cathode of Solid Oxide Fuel Cells under Accelerated Conditions. Journal of the Electrochemical Society, 2015, 162, F1282-F1291.	1.3	13
377	Oxygen reduction reaction at (La,Sr) (Co,Fe)O 3-δ electrode/La 9.5 Si 6 O 26.25 apatite electrolyte interface of solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 1203-1212.	3.8	13
378	Nickel Foam‣upported CoCO 3 @CoSe Nanowires with a Heterostructure Interface for Overall Water Splitting with Low Overpotential and High Efficiency. Energy Technology, 2019, 7, 1800741.	1.8	13

#	Article	IF	CITATIONS
379	A hybrid catalyst coating for a high-performance and chromium-resistive cathode of solid oxide fuel cells. Chemical Engineering Journal, 2022, 431, 134281.	6.6	13
380	The structure–activity correlation of single-site Ni catalysts dispersed onto porous carbon spheres toward electrochemical CO2 reduction. Fuel, 2022, 321, 124043.	3.4	13
381	Intrinsic vacancies in cubic-zirconia bulk and surface. Journal of Alloys and Compounds, 2010, 506, 898-901.	2.8	12
382	Prediction of oxygen ion conduction from relative Coulomb electronic interactions in oxyapatites. Journal of Power Sources, 2011, 196, 4524-4532.	4.0	12
383	Proton Transport in Hierarchical-Structured Nafion Membranes: A NMR Study. Journal of Physical Chemistry Letters, 2017, 8, 3624-3629.	2.1	12
384	Hierarchical Porous Carbons Derived from Rice Husk for Supercapacitors with High Activity and High Capacitance Retention Capability. ChemistrySelect, 2017, 2, 6438-6445.	0.7	12
385	Highly sulfur poisoning-tolerant BaCeO ₃ -impregnated La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â~`<i>δ</i>} cathodes for solid oxide fuel cells. Journal Physics D: Applied Physics, 2018, 51, 435502.	1.3	12
386	Reactive Deposition of Cobalt Electrodes: VIII . Effect of Oxygen Reduction on the Deposition of Cobalt in Co(II) Chloride DMF Solution. Journal of the Electrochemical Society, 1992, 139, 1535-1544.	1.3	11
387	Stack performance of phosphotungstic acid functionalized mesoporous silica (HPW-meso-silica) nanocomposite high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12830-12837.	3.8	11
388	Designed Iron Single Atom Catalysts for Highly Efficient Oxygen Reduction Reaction in Alkaline and Acid Media. Advanced Materials Interfaces, 2021, 8, 2001788.	1.9	11
389	An Efficient Bioâ€inspired Oxygen Reduction Reaction Catalyst: MnO <i>_x</i> Nanosheets Incorporated Iron Phthalocyanine Functionalized Graphene. Energy and Environmental Materials, 2021, 4, 474-480.	7.3	11
390	Progress on direct assembly approach for in situ fabrication of electrodes of reversible solid oxide cells. Materials Reports Energy, 2021, 1, 100023.	1.7	11
391	Composite nanoarchitectonics of ZIF-67 derived CoSe2/rGO with superior charge transfer for oxygen evolution reaction. Electrochimica Acta, 2022, 426, 140785.	2.6	11
392	Mechanism of the Electrodeposition of Cobalt(II) Chloride in N,Nâ€Đimethylformamide (DMF) Solution. Journal of the Electrochemical Society, 1991, 138, 94-100.	1.3	10
393	An Electrochemical Impedance Spectroscopy/Neutron Reflectometry Study of Water Uptake in the Poly(3,4â€Ethylenedioxythiophene):Poly(Styrene Sulfonate)/Polymethyl Methacrylateâ€Polydecyl Methacrylate Copolymer Solid ontact Ion‧elective Electrode. Electroanalysis, 2012, 24, 140-145.	1.5	10
394	Surface Segregation and Chromium Deposition and Poisoning on La0.6Sr0.4Co0.2Fe0.8O3-Â Cathodes of Solid Oxide Fuel Cells. ECS Transactions, 2013, 57, 599-604.	0.3	10
395	Synthesis and characterization of lanthanum silicate oxyapatites co-doped with A (A = Ba, Sr, and Ca) and Fe for solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 20739-20747.	5.2	10
396	Carbon Nanotubes-Supported Pt Electrocatalysts for O ₂ Reduction Reaction—Effect of Number of Nanotube Walls. Journal of Nanoscience and Nanotechnology, 2020, 20, 2736-2745.	0.9	10

#	Article	IF	CITATIONS
397	Substantially Enhanced Power Output and Durability of Direct Formic Acid Fuel Cells at Elevated Temperatures. Advanced Sustainable Systems, 2020, 4, 2000065.	2.7	10
398	A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3â~δ. Journal of Power Sources, 2010, 195, 977-983.	4.0	9
399	Co2MnO4 spinel-palladium co-infiltrated La0.7Ca0.3Cr0.5Mn0.5O3â^' cathodes for intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509, 9708-9717.	2.8	9
400	Electrocatalysts: Nitrogenâ€Doped Nanoporous Carbon/Graphene Nanoâ€Sandwiches: Synthesis and Application for Efficient Oxygen Reduction (Adv. Funct. Mater. 36/2015). Advanced Functional Materials, 2015, 25, 5876-5876.	7.8	9
401	Effects of Nb2O5 and Gd2O3 doping on boron volatility and activity between glass seals and lanthanum-containing cathode. Journal of the European Ceramic Society, 2017, 37, 1547-1555.	2.8	9
402	The electrocatalytic characterization and mechanism of carbon nanotubes with different numbers of walls for the VO ₂ ⁺ /VO ²⁺ redox couple. Physical Chemistry Chemical Physics, 2018, 20, 7791-7797.	1.3	9
403	Nitrogen and Phosphate Coâ€doped Graphene as Efficient Bifunctional Electrocatalysts by Precursor Modulation Strategy for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3262-3272.	1.7	9
404	Anodic polarization creates an electrocatalytically active Ni anode/electrolyte interface and mitigates the coarsening of Ni phase in SOFC. Electrochimica Acta, 2021, 391, 138912.	2.6	9
405	SmBaCo ₂ O _{5+δ} as High Efficient Oxygen Electrode of Solid Oxide Electrolysis Cells. ECS Transactions, 2013, 57, 3189-3196.	0.3	8
406	Facile synthesis of sub-monolayer Sn, Ru, and RuSn decorated Pt/C nanoparticles for formaldehyde electrooxidation. Journal of Electroanalytical Chemistry, 2014, 712, 55-61.	1.9	8
407	Thermodynamic stability mapping and electrochemical study of La1-xSrxCo0.2Fe0.8O3± (x=0.2–0.4) as a cathode of solid oxide fuel cellsÂin the presence of SO2. Electrochimica Acta, 2018, 287, 68-77.	2.6	8
408	Singleâ€Atom Catalysts: Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction (Adv. Mater. 13/2018). Advanced Materials, 2018, 30, 1870088.	11.1	8
409	Tuning the Electron Localization of Gold Enables the Control of Nitrogenâ€ŧoâ€Ammonia Fixation. Angewandte Chemie, 2019, 131, 18777-18782.	1.6	8
410	Defect repair of tin selenide photocathode <i>via in situ</i> selenization: enhanced photoelectrochemical performance and environmental stability. Journal of Materials Chemistry A, 2020, 8, 5342-5349.	5.2	8
411	A bifunctional catalyst based on a carbon quantum dots/mesoporous SrTiO ₃ heterostructure for cascade photoelectrochemical nitrogen reduction. Journal of Materials Chemistry A, 2022, 10, 12713-12721.	5.2	8
412	Reactive Deposition of Cobalt Electrodes: VII . Mechanistic Study in the Presence of Dissolved Oxygen—Calculation of Kinetic Parameters. Journal of the Electrochemical Society, 1992, 139, 1276-1282.	1.3	7
413	Performance of DMFCs prepared by hot-pressed MEA and catalyst-coated membrane. Fuel Cells Bulletin, 2007, 2007, 12-16.	0.7	7
414	Significant Promotion Effect of Bi2O3on the Activity and Stability of Directly Assembled Lanthanum Manganite Based Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F1471-F1477.	1.3	7

#	Article	IF	CITATIONS
415	Mechanism of the Electrodeposition of Cobalt(II) Thiocyanate in N,Nâ€Dimethylformamide (DMF) Solution and Effect of Chloride Ions. Journal of the Electrochemical Society, 1991, 138, 1001-1006.	1.3	6
416	Effect of characteristics of (Sm,Ce)O2 powder on the fabrication and performance of anode-supported solid oxide fuel cells. Materials Research Bulletin, 2012, 47, 121-129.	2.7	6
417	Role of electrocatalytic properties of infiltrated nanoparticles in the activity of cathodes of solid oxide fuel cells – A case study of infiltrated La0.8Sr0.2CoxMn1-xO3 (x=0, 0.5, and 1) on Pt electrode. International Journal of Hydrogen Energy, 2017, 42, 28807-28815.	3.8	6
418	Facile preparation of electrodes of efficient electrolyte-supported solid oxide fuel cells using a direct assembly approach. Electrochimica Acta, 2022, 424, 140643.	2.6	6
419	In-situ Observation on the Active Reaction Sites for the Oxygen Reduction in Solid Oxide Fuel Cells. ECS Transactions, 2007, 7, 875-880.	0.3	5
420	Strategy of the Development of Cr-tolerant Cathodes of Solid Oxide Fuel Cells. ECS Transactions, 2007, 7, 263-269.	0.3	5
421	Enhancement of Activity of PtRu Nanoparticles Towards Oxidation of Ethanol by Supporting on Poly(diallyldimethylammonium)-Functionalized Carbon Nanotubes and Modification with Phosphomolybdate. Electrocatalysis, 2011, 2, 52-59.	1.5	5
422	Dimensionally stable Ni Fe@Co/Ti nanoporous electrodes by reactive deposition for water electrolysis. International Journal of Hydrogen Energy, 2017, 42, 7143-7150.	3.8	5
423	Three-dimensional Ni foam supported pristine graphene as a superior oxygen evolution electrode. International Journal of Hydrogen Energy, 2019, 44, 22947-22954.	3.8	5
424	Verification and applicability of symmetric cell configuration for mechanistic study of oxygen electrode reactions of solid oxide cells. Solid State Ionics, 2020, 357, 115457.	1.3	5
425	Examining the Electrochemical Nature of an Ionogel Based on the Ionic Liquid [P ₆₆₆₁₄][TFSI] and TiO ₂ : Synthesis, Characterization, and Quantum Chemical Calculations. Industrial & Engineering Chemistry Research, 2022, 61, 8763-8774.	1.8	5
426	Synthesis of Platinum Nanoparticles and Then Self-Assembly on Nafion Membrane to Give a Catalyst Coated Membrane. Journal of Chemical Research, 2005, 2005, 449-451.	0.6	4
427	Development of (La0.75Sr0.25)(Cr0.5Mn0.5)O3 Cathodes of Solid Oxide Fuel Cells by Gelcasting Technique. ECS Transactions, 2007, 7, 1081-1088.	0.3	4
428	Analysis of fuel oxidation reaction steps in Ni/GDC anode electrode of solid oxide fuel cells by using palladium nanoparticles. , 2010, , .		3
429	Mesoporous Nafion Membranes for Fuel Cell Applications. ECS Transactions, 2011, 41, 1555-1560.	0.3	3
430	Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes. Journal of Nanoparticle Research, 2011, 13, 2973-2979.	0.8	2
431	High Temperature Proton Exchange Membranes Based on Various Heteropoly Acids(HPW, HSiW, HPMo) Tj ETQq1 Proton Conductivity for Fuel Cells. ECS Transactions, 2011, 41, 1603-1613.	1 0.7843 0.3	14 rgBT /0 2
432	Self-Assembly of Nanostructured Proton Exchange Membranes for Fuel Cells. ACS Symposium Series, 2013, , 243-263.	0.5	2

#	Article	IF	CITATIONS
433	Effect of BaO impregnation on sulfur tolerance of La0.6Sr0.4Co0.2Fe0.8O3â~'δ cathodes of solid oxide fuel cells. Materials Research Express, 2019, 6, 075504.	0.8	2
434	Hydrogen Production from Water and Air Through Solid Oxide Electrolysis. Biofuels and Biorefineries, 2015, , 223-248.	0.5	2
435	Enhanced Chromium Tolerance of Gd0.1Ce0.9O1.95 Impregnated La0.6Sr0.4Co0.2Fe0.8O3-Â Electrode of Solid Oxide Fuel Cells. ECS Transactions, 2013, 57, 2163-2173.	0.3	1
436	Preparation and performance of reactively deposited active battery plates. Journal of Materials Science, 1992, 27, 2223-2230.	1.7	0
437	HPW/MCM-41 Mesoporous Silica Composites as Novel Proton Exchange Membranes for Elevated Temperature Fuel Cells. ECS Transactions, 2009, 25, 1927-1933.	0.3	0
438	Electrode Behavior of Ni/GDC and Pd-Ni/GDC Cermets in H2/H2S Fuels of Solid Oxide Fuel Cells. ECS Transactions, 2009, 25, 2067-2072.	0.3	0
439	Special issue to "ICMAT 2009, Symposium F: nanostructured materials for electrochemical energy systems: lithium batteries, supercapacitors and fuel cells, June 28-July 3, 2009, Singapore― Journal of Solid State Electrochemistry, 2010, 14, 1741-1742.	1.2	0
440	High Temperature Ceramic Proton Exchange Membranes for Direct Methanol Fuel Cells. ECS Transactions, 2010, 26, 269-277.	0.3	0
441	Mg and Fe Modified Ni/GDC Cermets as Sulfur Tolerant Anodes of Solid Oxide Fuel Cells. ECS Transactions, 2011, 35, 1455-1462.	0.3	0
442	In-situ Self-Assembly of Graphene Supported MnO2 Nanowires for Enhanced Water Oxidation in Both Alkaline and Neutral Solutions. ECS Transactions, 2013, 58, 63-69.	0.3	0
443	System studies and understanding durability: general discussion. Faraday Discussions, 2015, 182, 437-456.	1.6	0
444	Materials development: general discussion. Faraday Discussions, 2015, 182, 307-328.	1.6	0
445	Oxygen electrodes: general discussion. Faraday Discussions, 2015, 182, 511-517.	1.6	0
446	Preface to the special issue on "2016 Curtinâ€UQ Workshop on Nanostructured Electromaterials for Energy― Asia-Pacific Journal of Chemical Engineering, 2016, 11, 326-326.	0.8	0
447	Single Atom Catalysts: Designed Iron Single Atom Catalysts for Highly Efficient Oxygen Reduction Reaction in Alkaline and Acid Media (Adv. Mater. Interfaces 8/2021). Advanced Materials Interfaces, 2021, 8, 2170044.	1.9	0
448	Solid Oxide Fuel Cells: Fabrication and Microstructure. , 2022, , 561-620.		0
449	Solid Oxide Fuel Cells: Principles and Materials. , 2022, , 357-424.		0
450	Solid Oxide Fuel Cells:. , 2022, , 425-495.		0

#	Article	IF	CITATIONS
451	Polymer Electrolyte Membrane Fuel Cells: Fabrication and Characterization. , 2022, , 229-289.		0
452	Polymer Electrolyte Membrane Fuel Cells. , 2022, , 325-354.		0
453	Alkaline Fuel Cells. , 2022, , 623-648.		0
454	Protonic Ceramic Oxide Fuel Cells, Microbial Fuel Cells, and Biofuel Cells. , 2022, , 695-721.		0
455	Fuels for Fuel Cells. , 2022, , 123-170.		0
456	Fabrication of High Performance (La,Sr)MnO3 Cathodes by Ion Impregnation. ECS Proceedings Volumes, 2003, 2003-07, 422-429.	0.1	0
457	Frontispiece: Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, .	1.7	0