Nathalie Grova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5766046/publications.pdf Version: 2024-02-01

Νλτηλίε Ορουλ

#	Article	IF	CITATIONS
1	Brominated flame retardants, a cornelian dilemma. Environmental Chemistry Letters, 2023, 21, 9-14.	8.3	6
2	Head-to-Head Study of Developmental Neurotoxicity and Resultant Phenotype in Rats: α-Hexabromocyclododecane versus Valproic Acid, a Recognized Model of Reference for Autism Spectrum Disorders. Toxics, 2022, 10, 180.	1.6	5
3	Assessment of 9-OH- and 7,8-diol-benzo[a]pyrene in Blood as Potent Markers of Cognitive Impairment Related to benzo[a]pyrene Exposure: An Animal Model Study. Toxics, 2021, 9, 50.	1.6	6
4	N6-Methyladenine in Eukaryotic DNA: Tissue Distribution, Early Embryo Development, and Neuronal Toxicity. Frontiers in Genetics, 2021, 12, 657171.	1.1	15
5	Ultra performance liquid chromatography – tandem mass spectrometer method applied to the analysis of both thyroid and steroid hormones in human hair. Journal of Chromatography A, 2020, 1612, 460648.	1.8	15
6	The COVID-19 Pandemic: Does Our Early Life Environment, Life Trajectory and Socioeconomic Status Determine Disease Susceptibility and Severity?. International Journal of Molecular Sciences, 2020, 21, 5094.	1.8	39
7	Blood pharmacokinetic of 17 common pesticides in mixture following a single oral exposure in rats: implications for human biomonitoring and exposure assessment. Archives of Toxicology, 2019, 93, 2849-2862.	1.9	9
8	Polycyclic Aromatic Hydrocarbons Can Trigger Hepatocyte Release of Extracellular Vesicles by Various Mechanisms of Action Depending on Their Affinity for the Aryl Hydrocarbon Receptor. Toxicological Sciences, 2019, 171, 443-462.	1.4	18
9	PAHs increase the production of extracellular vesicles both inÂvitro in endothelial cells and inÂvivo in urines from rats. Environmental Pollution, 2019, 255, 113171.	3.7	15
10	Epigenetic and Neurological Impairments Associated with Early Life Exposure to Persistent Organic Pollutants. International Journal of Genomics, 2019, 2019, 1-19.	0.8	74
11	Mechanisms involved in the death of steatotic WIF-B9 hepatocytes co-exposed to benzo[a]pyrene and ethanol: a possible key role for xenobiotic metabolism and nitric oxide. Free Radical Biology and Medicine, 2018, 129, 323-337.	1.3	8
12	Exposure to environmental levels of polycyclic aromatic hydrocarbons leads to epigenetic modulation in a rat model. Toxicology Letters, 2018, 295, S56.	0.4	1
13	Hair analysis for the biomonitoring of polycyclic aromatic hydrocarbon exposure: comparison with urinary metabolites and DNA adducts in a rat model. Archives of Toxicology, 2018, 92, 3061-3075.	1.9	13
14	Exposure to Polycyclic Aromatic Hydrocarbons Leads to Non-monotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Scientific Reports, 2018, 8, 10577.	1.6	24
15	Hair analysis for the biomonitoring of pesticide exposure: comparison with blood and urine in a rat model. Archives of Toxicology, 2017, 91, 2813-2825.	1.9	81
16	Role for the ATPase inhibitory factor 1 in the environmental carcinogen-induced Warburg phenotype. Scientific Reports, 2017, 7, 195.	1.6	15
17	Identification of new tetrahydroxylated metabolites of Polycyclic Aromatic Hydrocarbons in hair as biomarkers of exposure and signature of DNA adduct levels. Analytica Chimica Acta, 2017, 995, 65-76.	2.6	12
18	Chemical Evaluation of Electronic Cigarettes: Multicomponent Analysis of Liquid Refills and their Corresponding Aerosols. Journal of Analytical Toxicology, 2017, 41, 670-678.	1.7	77

NATHALIE GROVA

#	Article	IF	CITATIONS
19	Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 2.5. Environmental Pollution, 2017, 230, 163-177.	3.7	73
20	New insights into urine-based assessment of polycyclic aromatic hydrocarbon-exposure from a rat model: Identification of relevant metabolites and influence of elimination kinetics. Environmental Pollution, 2017, 228, 484-495.	3.7	19
21	Differential responses of healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM4. Environmental Pollution, 2016, 218, 1074-1088.	3.7	58
22	Influence of pesticide physicochemical properties on the association between plasma and hair concentration. Analytical and Bioanalytical Chemistry, 2016, 408, 3601-3612.	1.9	21
23	Behavioral toxicity and physiological changes from repeated exposure to fluorene administered orally or intraperitoneally to adult male Wistar rats: A dose–response study. NeuroToxicology, 2016, 53, 321-333.	1.4	17
24	Analysis of tetrahydroxylated benzo[a]pyrene isomers in hair as biomarkers of exposure to benzo[a]pyrene. Analytical and Bioanalytical Chemistry, 2016, 408, 1997-2008.	1.9	16
25	Inhibitory Action of Benzo[î±]pyrene on Hepatic Lipoprotein Receptors In Vitro and on Liver Lipid Homeostasis in Mice. PLoS ONE, 2014, 9, e102991.	1.1	12
26	Short-term effects of a perinatal exposure to a 16 polycyclic aromatic hydrocarbon mixture in rats: Assessment of early motor and sensorial development and cerebral cytochrome oxidase activity in pups. NeuroToxicology, 2014, 43, 90-101.	1.4	13
27	Tetrahydroxylated-benzo[a]pyrene isomer analysis after hydrolysis of DNA-adducts isolated from rat and human white blood cells. Journal of Chromatography A, 2014, 1364, 183-191.	1.8	14
28	O10: Pesticide concentration in hair of animals under controlled exposure. Toxicologie Analytique Et Clinique, 2014, 26, S9.	0.1	0
29	Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate. Toxicology and Applied Pharmacology, 2013, 271, 175-183.	1.3	17
30	Gas chromatography–tandem mass spectrometry analysis of 52 monohydroxylated metabolites of polycyclic aromatic hydrocarbons in hairs of rats after controlled exposure. Analytical and Bioanalytical Chemistry, 2013, 405, 8897-8911.	1.9	23
31	Neurobehavioral Toxicity of a Repeated Exposure (14 Days) to the Airborne Polycyclic Aromatic Hydrocarbon Fluorene in Adult Wistar Male Rats. PLoS ONE, 2013, 8, e71413.	1.1	24
32	Significant weight gain in mice exposed to the pollutant benzo[a]pyrene is associated with modifications in hepatic lipoprotein receptors and lipid status. FASEB Journal, 2013, 27, lb118.	0.2	0
33	Immunogenicity of a Promiscuous T Cell Epitope Peptide Based Conjugate Vaccine against Benzo[a]pyrene: Redirecting Antibodies to the Hapten. PLoS ONE, 2012, 7, e38329.	1.1	4
34	Determination of PAHs and OH-PAHs in Rat Brain by Gas Chromatography Tandem (Triple Quadrupole) Mass Spectrometry. Chemical Research in Toxicology, 2011, 24, 1653-1667.	1.7	39
35	Modulation of Benzo[a]pyrene induced immunotoxicity in mice actively immunized with a B[a]P-diphtheria toxoid conjugate. Toxicology and Applied Pharmacology, 2009, 240, 37-45. 	1.3	21
36	Modulation of carcinogen bioavailability by immunisation with benzo[a]pyrene-conjugate vaccines. Vaccine, 2009, 27, 4142-4151.	1.7	31

NATHALIE GROVA

#	Article	IF	CITATIONS
37	Sub-acute administration of benzo[a]pyrene (B[a]P) reduces anxiety-related behaviour in adult mice and modulates regional expression of N-methyl-d-aspartate (NMDA) receptors genes in relevant brain regions. Chemosphere, 2008, 73, S295-S302.	4.2	41
38	TRANSFER OF PHENANTHRENE AND ITS HYDROXYLATED METABOLITES TO MILK, URINE AND FAECES. Polycyclic Aromatic Compounds, 2008, 28, 98-111.	1.4	4
39	Modulation of behavior and NMDA-R1 gene mRNA expression in adult female mice after sub-acute administration of benzo(a)pyrene. NeuroToxicology, 2007, 28, 630-636.	1.4	74
40	Milk and Urine Excretion of Polycyclic Aromatic Hydrocarbons and Their Hydroxylated Metabolites After a Single Oral Administration in Ruminants. Journal of Dairy Science, 2007, 90, 2624-2629.	1.4	38
41	Short- and long-term effects of a neonatal exposure to benzo(a)pyrene (BaP) or 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) on behaviour of rat pups. Toxicology Letters, 2006, 164, S80-S81	. 0.4	5
42	Effect of oral exposure to polycyclic aromatic hydrocarbons on goat's milk contamination. Agronomy for Sustainable Development, 2006, 26, 195-199.	2.2	27
43	Evaluation of the Risk of PAHs and Dioxins Transfer to Humans via the Dairy Ruminant. , 2005, , 419-430.		1
44	Determination of Phenanthrene and Hydroxyphenanthrenes in Various Biological Matrices at Trace Levels using Gas Chromatography-Mass Spectrometry. Journal of Analytical Toxicology, 2005, 29, 175-181.	1.7	44
45	Milkâ°'Arterial Plasma Transfer of PCDDs and PCDFs in Pigs. Journal of Agricultural and Food Chemistry, 2002, 50, 1695-1699.	2.4	4
46	Detection of Polycyclic Aromatic Hydrocarbon Levels in Milk Collected Near Potential Contamination Sources. Journal of Agricultural and Food Chemistry, 2002, 50, 4640-4642.	2.4	89
47	Portal absorption of 14C after ingestion of spiked milk with 14C-phenanthrene, 14C-benzo[a]pyrene or 14C-TCDD in growing pigs. Chemosphere, 2002, 48, 843-848.	4.2	32
48	Milk, urine and faeces excretion kinetics in lactating goats after an oral administration of aromatic hydrocarbons. International Dairy Journal, 2002, 12, 1025-1031.	1.5	57
49	Le transfert des micropolluants organiques dans la chaîne alimentaire Etat et perspectives de recherche. Oleagineux Corps Gras Lipides, 2000, 7, 431-435.	0.2	6
50	Gas Chromatography-Mass Spectrometry Study of Polycyclic Aromatic Hydrocarbons in Grass and Milk from Urban and Rural Farms. European Journal of Mass Spectrometry, 2000, 6, 457-460.	0.5	41