List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576549/publications.pdf Version: 2024-02-01

239 papers	28,719 citations	4146 87 h-index	⁵⁹⁸⁸ 160 g-index
272	272	272	27342
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The multifunctional nucleolus. Nature Reviews Molecular Cell Biology, 2007, 8, 574-585.	37.0	1,306
2	Nucleolar proteome dynamics. Nature, 2005, 433, 77-83.	27.8	1,061
3	Directed Proteomic Analysis of the Human Nucleolus. Current Biology, 2002, 12, 1-11.	3.9	962
4	Structure and Function in the Nucleus. Science, 1998, 280, 547-553.	12.6	884
5	The Nucleolus under Stress. Molecular Cell, 2010, 40, 216-227.	9.7	882
6	Nuclear speckles: a model for nuclear organelles. Nature Reviews Molecular Cell Biology, 2003, 4, 605-612.	37.0	870
7	Large-Scale Proteomic Analysis of the Human Spliceosome. Genome Research, 2002, 12, 1231-1245.	5.5	808
8	Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukemia cells. Cell, 1994, 76, 345-356.	28.9	691
9	Nuclear Speckles. Cold Spring Harbor Perspectives in Biology, 2011, 3, a000646-a000646.	5.5	664
10	Common genetic variation drives molecular heterogeneity in human iPSCs. Nature, 2017, 546, 370-375.	27.8	491
11	Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. Nature Genetics, 1998, 20, 46-50.	21.4	470
12	Paraspeckles. Current Biology, 2002, 12, 13-25.	3.9	455
13	Transcription-dependent colocalization of the U1, U2, U4/U6, and U5 snRNPs in coiled bodies. Journal of Cell Biology, 1992, 117, 1-14.	5.2	409
14	ldentifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. Journal of Cell Biology, 2008, 183, 223-239.	5.2	404
15	Multidimensional proteomics for cell biology. Nature Reviews Molecular Cell Biology, 2015, 16, 269-280.	37.0	375
16	Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar Functions. Molecular Biology of the Cell, 2005, 16, 260-269.	2.1	352
17	CAJAL BODIES: A Long History of Discovery. Annual Review of Cell and Developmental Biology, 2005, 21, 105-131.	9.4	332
18	A Quantitative Spatial Proteomics Analysis of Proteome Turnover in Human Cells. Molecular and Cellular Proteomics. 2012. 11. M111.011429.	3.8	332

#	Article	IF	CITATIONS
19	Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells. Nature Cell Biology, 2010, 12, 886-893.	10.3	315
20	Analysis of Nucleolar Protein Dynamics Reveals the Nuclear Degradation of Ribosomal Proteins. Current Biology, 2007, 17, 749-760.	3.9	314
21	Highly efficient chemical synthesis of 2′-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Research, 1989, 17, 3373-3386.	14.5	286
22	Distinct and Overlapping Sets of SUMO-1 and SUMO-2 Target Proteins Revealed by Quantitative Proteomics. Molecular and Cellular Proteomics, 2006, 5, 2298-2310.	3.8	274
23	High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli. Molecular Biology of the Cell, 2010, 21, 3735-3748.	2.1	274
24	Cell fate decisions are specified by the dynamic ERK interactome. Nature Cell Biology, 2009, 11, 1458-1464.	10.3	264
25	Cajal Body dynamics and association with chromatin are ATP-dependent. Nature Cell Biology, 2002, 4, 502-508.	10.3	256
26	Paraspeckles. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000687-a000687.	5.5	254
27	In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy. Molecular and Cellular Proteomics, 2008, 7, 132-144.	3.8	251
28	HSP90 and Its R2TP/Prefoldin-like Cochaperone Are Involved in the Cytoplasmic Assembly of RNA Polymerase II. Molecular Cell, 2010, 39, 912-924.	9.7	246
29	NOPdb: Nucleolar Proteome Database2008 update. Nucleic Acids Research, 2009, 37, D181-D184.	14.5	243
30	Repo-Man recruits PP1Î ³ to chromatin and is essential for cell viability. Journal of Cell Biology, 2006, 172, 679-692.	5.2	240
31	In Vivo Analysis of Cajal Body Movement, Separation, and Joining in Live Human Cells. Journal of Cell Biology, 2000, 151, 1561-1574.	5.2	239
32	Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nature Communications, 2018, 9, 2341.	12.8	238
33	Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Current Biology, 1999, 9, 1065-1074.	3.9	227
34	Spatial Organization of Large-Scale Chromatin Domains in the Nucleus: A Magnified View of Single Chromosome Territories. Journal of Cell Biology, 1997, 139, 1597-1610.	5.2	220
35	Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosisevidence that the coiled body is a kinetic nuclear structure Journal of Cell Biology, 1993, 120, 841-852.	5.2	216
36	P54nrb Forms a Heterodimer with PSP1 That Localizes to Paraspeckles in an RNA-dependent Manner. Molecular Biology of the Cell, 2005, 16, 5304-5315.	2.1	207

#	Article	IF	CITATIONS
37	Ser/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Research, 1992, 20, 5263-5269.	14.5	200
38	A Proteomic Study of SUMO-2 Target Proteins. Journal of Biological Chemistry, 2004, 279, 33791-33798.	3.4	197
39	Condensin and Repo-Man–PP1 co-operate in the regulation of chromosome architecture during mitosis. Nature Cell Biology, 2006, 8, 1133-1142.	10.3	195
40	The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nature Immunology, 2016, 17, 104-112.	14.5	192
41	Requirement for an upstream element for optimal transcription of a bacterial tRNA gene. Nature, 1983, 305, 248-250.	27.8	182
42	Antisense probing of the human U4U6 snRNP with biotinylated 2′-OMe RNA oligonucleotides. Cell, 1989, 59, 531-539.	28.9	178
43	Condensed mitotic chromatin is accessible to transcription factors and chromatin structural proteins. Journal of Cell Biology, 2005, 168, 41-54.	5.2	177
44	A herpes simplex virus type 1 immediate-early gene product, IE63, regulates small nuclear ribonucleoprotein distribution Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9056-9060.	7.1	172
45	hRRN3 is essential in the SL1-mediated recruitment of RNA Polymerase I to rRNA gene promoters. EMBO Journal, 2001, 20, 1373-1382.	7.8	168
46	Human miRNA Precursors with Box H/ACA snoRNA Features. PLoS Computational Biology, 2009, 5, e1000507.	3.2	167
47	Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Research, 2010, 38, 7388-7399.	14.5	167
48	A Quantitative Proteomics Analysis of Subcellular Proteome Localization and Changes Induced by DNA Damage. Molecular and Cellular Proteomics, 2010, 9, 457-470.	3.8	164
49	The nucleolus. Journal of Cell Science, 2005, 118, 1335-1337.	2.0	161
50	Targeted snRNP depletion reveals an additional role for mammalian U1 snRNP in spliceosome assembly. Cell, 1990, 63, 293-302.	28.9	159
51	Cajal bodies and coilin—moving towards function. Journal of Cell Biology, 2002, 159, 17-21.	5.2	159
52	Quantitative analysis of chromatin compaction in living cells using FLIM–FRET. Journal of Cell Biology, 2009, 187, 481-496.	5.2	153
53	Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nature Immunology, 2019, 20, 1542-1554.	14.5	152
54	Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. Journal of Cell Biology, 2004, 166, 787-800.	5.2	147

#	Article	IF	CITATIONS
55	Time-lapse Imaging Reveals Dynamic Relocalization of PP1Î ³ throughout the Mammalian Cell Cycle. Molecular Biology of the Cell, 2003, 14, 107-117.	2.1	145
56	Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus Journal of Cell Biology, 1995, 131, 817-831.	5.2	143
57	Splicing Regulation at the Second Catalytic Step by Sex-lethal Involves 3′ Splice Site Recognition by SPF45. Cell, 2002, 109, 285-296.	28.9	140
58	snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. Journal of Cell Science, 2001, 114, 4407-4419.	2.0	137
59	Differential interaction of splicing snRNPs with coiled bodies and interchromatin granules during mitosis and assembly of daughter cell nuclei Journal of Cell Biology, 1994, 126, 11-23.	5.2	134
60	Reversible Accumulation of PEGylated Single-Walled Carbon Nanotubes in the Mammalian Nucleus. ACS Nano, 2008, 2, 2085-2094.	14.6	134
61	Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. Journal of Cell Science, 2001, 114, 4219-4228.	2.0	133
62	Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics. Molecular and Cellular Proteomics, 2013, 12, 3851-3873.	3.8	132
63	Antigen receptor control of methionine metabolism in T cells. ELife, 2019, 8, .	6.0	132
64	Bioinformatic analysis of the nucleolus. Biochemical Journal, 2003, 376, 553-569.	3.7	130
65	Probing the structure and function of U2 snRNP with antisense oligonucleotides made of 2′-OMe RNA. Cell, 1989, 58, 383-390.	28.9	129
66	Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. Journal of Cell Biology, 2007, 178, 733-740.	5.2	128
67	Multibatch TMT Reveals False Positives, Batch Effects and Missing Values. Molecular and Cellular Proteomics, 2019, 18, 1967-1980.	3.8	128
68	Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Research, 2011, 39, 3879-3891.	14.5	123
69	Human <scp>RIF</scp> 1 and protein phosphatase 1 stimulate <scp>DNA</scp> replication origin licensing but suppress origin activation. EMBO Reports, 2017, 18, 403-419.	4.5	123
70	Global Subcellular Characterization of Protein Degradation Using Quantitative Proteomics. Molecular and Cellular Proteomics, 2013, 12, 638-650.	3.8	121
71	A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. ELife, 2014, 3, e01630.	6.0	120
72	RNA polymerase interactions with the upstream region of the E. coli tyrT promoter. Cell, 1983, 35, 265-273.	28.9	113

#	Article	IF	CITATIONS
73	Quantitative Proteomics and Dynamic Imaging of the Nucleolus Reveal Distinct Responses to UV and Ionizing Radiation. Molecular and Cellular Proteomics, 2011, 10, M111.009241.	3.8	110
74	Inhibition of Protein Dephosphorylation Results in the Accumulation of Splicing snRNPs and Coiled Bodies within the Nucleolus. Experimental Cell Research, 1997, 230, 84-93.	2.6	108
75	Stable-isotope labeling with amino acids in nematodes. Nature Methods, 2011, 8, 849-851.	19.0	108
76	Antisense probes containing 2-aminoadenosine allow efficient depletion of U5 snRNP from HeLa splicing extracts. Nucleic Acids Research, 1991, 19, 3193-3198.	14.5	107
77	Mitotic phosphatases: no longer silent partners. Current Opinion in Cell Biology, 2006, 18, 623-631.	5.4	107
78	Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells. Molecular and Cellular Proteomics, 2010, 9, 117-130.	3.8	106
79	Antisense oligonucleotides made of 2'-O-alkylRNA: their properties and applications in RNA biochemistry. FEBS Letters, 1993, 325, 123-127.	2.8	105
80	Cloning and characterization of hSRP1Â, a tissue-specific nuclear transport factor. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 582-587.	7.1	103
81	Cleaning up the masses: Exclusion lists to reduce contamination with HPLC-MS/MS. Journal of Proteomics, 2013, 88, 92-103.	2.4	102
82	Stringent control of bacterial transcription. Cell, 1985, 41, 6-8.	28.9	101
83	Dynamic Interactions Between Splicing snRNPs, Coiled Bodies and Nucleoli Revealed Using snRNP Protein Fusions to the Green Fluorescent Protein. Experimental Cell Research, 1998, 243, 290-304.	2.6	100
84	NOPdb: Nucleolar Proteome Database. Nucleic Acids Research, 2006, 34, D218-D220.	14.5	93
85	p72: a human nuclear DEAD box protein highly related to p68. Nucleic Acids Research, 1996, 24, 3739-3747.	14.5	92
86	Herpes Simplex Virus IE63 (ICP27) Protein Interacts with Spliceosome-Associated Protein 145 and Inhibits Splicing prior to the First Catalytic Step. Journal of Virology, 2001, 75, 4376-4385.	3.4	91
87	Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo. Journal of Cell Science, 2003, 116, 2039-2050.	2.0	91
88	Deep Proteome Analysis Identifies Age-Related Processes in C.Âelegans. Cell Systems, 2016, 3, 144-159.	6.2	90
89	The Spliceosome. BioEssays, 1993, 15, 595-603.	2.5	89
90	3D3/lyric: a novel transmembrane protein of the endoplasmic reticulum and nuclear envelope, which is also present in the nucleolus. Experimental Cell Research, 2004, 294, 94-105.	2.6	86

#	Article	IF	CITATIONS
91	Nuclear organization of pre-mRNA splicing factors. Current Opinion in Cell Biology, 1999, 11, 372-377.	5.4	85
92	Molecular analysis of the coiled body. Journal of Cell Science, 1995, 1995, 107-113.	2.0	84
93	UV-induced fragmentation of Cajal bodies. Journal of Cell Biology, 2006, 175, 401-413.	5.2	83
94	The Dynamics of the Nucleolus. Critical Reviews in Eukaryotic Gene Expression, 2003, 13, 39-54.	0.9	82
95	Nuclear substructure and dynamics. Current Biology, 2003, 13, R825-R828.	3.9	81
96	Human box C/D snoRNA processing conservation across multiple cell types. Nucleic Acids Research, 2012, 40, 3676-3688.	14.5	79
97	Purification and characterisation of p99, a nuclear modulator of protein phosphatase 1 activity. FEBS Letters, 1997, 420, 57-62.	2.8	78
98	Site-directed ribose methylation identifies 2′-OH groups in polyadenylation substrates critical for AAUAAA recognition and poly(A) addition. Cell, 1991, 65, 125-133.	28.9	76
99	Non-snRNP protein splicing factors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 247-265.	2.4	76
100	Mass spectrometryâ€based immunoâ€precipitation proteomics – The user's guide. Proteomics, 2011, 11, 1153-1159.	2.2	76
101	PHD1 Links Cell-Cycle Progression to Oxygen Sensing through Hydroxylation of the Centrosomal Protein Cep192. Developmental Cell, 2013, 26, 381-392.	7.0	74
102	A Proteomic Screen for Nucleolar SUMO Targets Shows SUMOylation Modulates the Function of Nop5/Nop58. Molecular Cell, 2010, 39, 618-631.	9.7	72
103	Large-Scale Isolation of Cajal Bodies from HeLa Cells. Molecular Biology of the Cell, 2002, 13, 2461-2473.	2.1	68
104	Localisation of splicing snRNPs in mammalian cells. Molecular Biology Reports, 1993, 18, 127-133.	2.3	66
105	Cell biology and the genome projects a concerted strategy for characterizing multiprotein complexes by using mass spectrometry. Trends in Cell Biology, 1997, 7, 139-142.	7.9	65
106	Yeast Pescadillo is required for multiple activities during 60S ribosomal subunit synthesis. Rna, 2002, 8, 626-636.	3.5	65
107	Displacement affinity chromatography of protein phosphatase one (PP1) complexes. BMC Biochemistry, 2008, 9, 28.	4.4	65
108	Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations. PLoS ONE, 2013, 8, e67689.	2.5	65

#	Article	IF	CITATIONS
109	Toward a High-Resolution View of Nuclear Dynamics. Science, 2007, 318, 1402-1407.	12.6	63
110	Establishment of a Protein Frequency Library and Its Application in the Reliable Identification of Specific Protein Interaction Partners. Molecular and Cellular Proteomics, 2010, 9, 861-879.	3.8	63
111	Identification of Small Molecule Inhibitors of Pre-mRNA Splicing. Journal of Biological Chemistry, 2014, 289, 34683-34698.	3.4	62
112	Guidelines for reporting the use of gel electrophoresis in proteomics. Nature Biotechnology, 2008, 26, 863-864.	17.5	61
113	Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling. Molecular and Cellular Proteomics, 2016, 15, 2476-2490.	3.8	61
114	The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription. Developmental Cell, 2017, 42, 241-255.e6.	7.0	61
115	Detecting Proteinâ€Protein Interactions In Vivo with FRET using Multiphoton Fluorescence Lifetime Imaging Microscopy (FLIM). Current Protocols in Cytometry, 2007, 42, Unit12.10.	3.7	60
116	Quantitative Proteomic Analysis of Chromatin Reveals that Ctf18 Acts in the DNA Replication Checkpoint. Molecular and Cellular Proteomics, 2011, 10, M110.005561.	3.8	60
117	Synthesis and applications of oligoribonucleotides with selected 2′-O-methylation using the 2′-O-[1-(2-fluorophenyl)-4-methoxypiperidin-4-yl] protecting group. Nucleic Acids Research, 1990, 18, 5143-5151.	14.5	59
118	Nuclear organization of splicing snRNPs during differentiation of murine erythroleukemia cells in vitro Journal of Cell Biology, 1993, 123, 1055-1068.	5.2	58
119	Direct interaction between hnRNPâ€M and CDC5L/PLRG1 proteins affects alternative splice site choice. EMBO Reports, 2010, 11, 445-451.	4.5	57
120	Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. Journal of Cell Biology, 2014, 207, 463-480.	5.2	57
121	Protein phosphatase 4 interacts with the Survival of Motor Neurons complex and enhances the temporal localisation of snRNPs. Journal of Cell Science, 2003, 116, 1905-1913.	2.0	55
122	Advancing Cell Biology Through Proteomics in Space and Time (PROSPECTS). Molecular and Cellular Proteomics, 2012, 11, 0112.017731.	3.8	55
123	Interaction of U-box E3 ligase SNEV with PSMB4, the β7 subunit of the 20ÂS proteasome. Biochemical Journal, 2005, 388, 593-603.	3.7	54
124	The serine/arginine-rich protein SF2/ASF regulates protein sumoylation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16119-16124.	7.1	54
125	Metabolic complexity in the RNA world and implications for the origin of protein synthesis. Journal of Molecular Evolution, 1990, 30, 7-15.	1.8	53
126	Spatial mapping of splicing factor complexes involved in exon and intron definition. Journal of Cell Biology, 2008, 181, 921-934.	5.2	53

#	Article	IF	CITATIONS
127	Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS. ELife, 2017, 6, .	6.0	53
128	Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C.Âelegans. Cell Systems, 2017, 5, 38-52.e4.	6.2	52
129	Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. EMBO Journal, 2020, 39, e104419.	7.8	52
130	p53â€Dependent subcellular proteome localization following DNA damage. Proteomics, 2010, 10, 4087-4097.	2.2	51
131	Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. IScience, 2022, 25, 103827.	4.1	51
132	In vivo analysis of NHPX reveals a novel nucleolar localization pathway involving a transient accumulation in splicing speckles. Journal of Cell Biology, 2002, 157, 615-629.	5.2	50
133	A perspective on proteomics in cell biology. Trends in Cell Biology, 2014, 24, 257-264.	7.9	50
134	Protein phosphatase 1 can modulate alternative 5′ splice site selection in a HeLa splicing extract. FEBS Letters, 1994, 352, 276-280.	2.8	49
135	Systematic Analysis of Protein Pools, Isoforms, and Modifications Affecting Turnover and Subcellular Localization. Molecular and Cellular Proteomics, 2012, 11, M111.013680.	3.8	48
136	A role for the CB-associated SUMO isopeptidase USPL1 in RNAPII-mediated snRNA transcription. Journal of Cell Science, 2014, 127, 1065-78.	2.0	48
137	A Direct Interaction between the Carboxyl-terminal Region of CDC5L and the WD40 Domain of PLRG1 Is Essential for Pre-mRNA Splicing. Journal of Biological Chemistry, 2001, 276, 42370-42381.	3.4	47
138	An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature, 2018, 556, 376-380.	27.8	47
139	SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly. Nucleic Acids Research, 2005, 33, 6868-6883.	14.5	46
140	Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. ELife, 2015, 4,	6.0	46
141	Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors. PLoS ONE, 2012, 7, e48084.	2.5	44
142	A protein phosphatase network controls the temporal and spatial dynamics of differentiation commitment in human epidermis. ELife, 2017, 6, .	6.0	44
143	SPF30 Is an Essential Human Splicing Factor Required for Assembly of the U4/U5/U6 Tri-small Nuclear Ribonucleoprotein into the Spliceosome. Journal of Biological Chemistry, 2001, 276, 31142-31150.	3.4	43
144	FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35. Rna, 2005, 11, 1201-1214.	3.5	43

#	Article	IF	CITATIONS
145	Alteration of the growth-rate-dependent regulation of Escherichia coli tyrT expression by promoter mutations. Journal of Molecular Biology, 1986, 189, 251-255.	4.2	41
146	Analysis of Human Small Nucleolar RNAs (snoRNA) and the Development of snoRNA Modulator of Gene Expression Vectors. Molecular Biology of the Cell, 2010, 21, 1569-1584.	2.1	40
147	Efficient analysis of mammalian polysomes in cells and tissues using Ribo Mega-SEC. ELife, 2018, 7, .	6.0	40
148	Population-scale proteome variation in human induced pluripotent stem cells. ELife, 2020, 9, .	6.0	40
149	Sequence-specific affinity selection of mammalian splicing complexes. Nucleic Acids Research, 1990, 18, 7373-7379.	14.5	39
150	RRP1B Targets PP1 to Mammalian Cell Nucleoli and Is Associated with Pre-60S Ribosomal Subunits. Molecular Biology of the Cell, 2010, 21, 4212-4226.	2.1	39
151	Identification and Functional Characterization of FMN2, a Regulator of the Cyclin-Dependent Kinase Inhibitor p21. Molecular Cell, 2013, 49, 922-933.	9.7	39
152	Quantitative Profiling of the Human Substantia Nigra Proteome from Laser-capture Microdissected FFPE Tissue. Molecular and Cellular Proteomics, 2020, 19, 839-851.	3.8	39
153	Plant SILAC: Stable-Isotope Labelling with Amino Acids of Arabidopsis Seedlings for Quantitative Proteomics. PLoS ONE, 2013, 8, e72207.	2.5	39
154	Neuronal Differentiation in the Rat Hippocampus Involves a Stageâ€specific Reorganization of Subnuclear Structure both <i>In Vivo</i> and <i>In Vitro</i> . European Journal of Neuroscience, 1996, 8, 892-905.	2.6	37
155	Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei. Molecular and Cellular Proteomics, 2018, 17, 1184-1195.	3.8	36
156	Nuclear RNA processing. Current Opinion in Cell Biology, 1991, 3, 493-501.	5.4	35
157	Characterization of hCINAP, a Novel Coilin-interacting Protein Encoded by a Transcript from the Transcription Factor TAFIID32 Locus. Journal of Biological Chemistry, 2005, 280, 36429-36441.	3.4	35
158	Microâ€proteomics with iterative data analysis: Proteome analysis in <i>C. elegans</i> at the single worm level. Proteomics, 2016, 16, 381-392.	2.2	34
159	Characterisation of the biflavonoid hinokiflavone as a pre-mRNA splicing modulator that inhibits SENP. ELife, 2017, 6, .	6.0	34
160	Antisense probes targeted to an internal domain in U2 snRNP specifically inhibit the second step of pre-mRNA splicing. Nucleic Acids Research, 1992, 20, 4457-4464.	14.5	33
161	Spliceosome assembly: The unwinding role of DEAD-box proteins. Current Biology, 1998, 8, R532-R534.	3.9	33
162	Global Proteomics Analysis of the Response to Starvation in C. elegans*. Molecular and Cellular Proteomics, 2015, 14, 1989-2001.	3.8	32

#	Article	IF	CITATIONS
163	FMDV replicons encoding green fluorescent protein are replication competent. Journal of Virological Methods, 2014, 209, 35-40.	2.1	31
164	ppGpp regulates the binding of two RNA polymerase molecules to thetyrTpromoter. Nucleic Acids Research, 1982, 10, 5043-5057.	14.5	30
165	RNA splicing: Unexpected spliceosome diversity. Current Biology, 1996, 6, 802-805.	3.9	30
166	An intranucleolar body associated with rDNA. Chromosoma, 2011, 120, 481-499.	2.2	30
167	The histone chaperone Vps75 forms multiple oligomeric assemblies capable of mediating exchange between histone H3–H4 tetramers and Asf1–H3–H4 complexes. Nucleic Acids Research, 2016, 44, 6157-6172.	14.5	30
168	The nuclear PP1 interacting protein ZAP3 (ZAP) is a putative nucleoside kinase that complexes with SAM68, CIA, NF110/45, and HNRNP-G. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1339-1350.	2.3	29
169	PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28Î ³ . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6477-E6486.	7.1	29
170	Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. Nucleic Acids Research, 2021, 49, 6722-6738.	14.5	29
171	2′-O-alkyloligoribonucleotides Synthesis and Applications in Studying RNA Splicing. Nucleosides & Nucleotides, 1991, 10, 25-36.	0.5	28
172	Catalytic RNA and the origin of genetic systems. Trends in Genetics, 1990, 6, 145-149.	6.7	27
173	hCINAP is an atypical mammalian nuclear adenylate kinase with an ATPase motif: Structural and functional studies. Proteins: Structure, Function and Bioinformatics, 2012, 80, 206-220.	2.6	27
174	Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF ^{Slmb} degron. Molecular Biology of the Cell, 2018, 29, 96-110.	2.1	27
175	Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics. Wellcome Open Research, 2019, 4, 152.	1.8	27
176	Brd4â€Brd2 isoform switching coordinates pluripotent exit and Smad2â€dependent lineage specification. EMBO Reports, 2017, 18, 1108-1122.	4.5	26
177	Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning. Molecular and Cellular Proteomics, 2017, 16, 2254-2267.	3.8	24
178	Nuclear functions in space and time: Gene expression in a dynamic, constrained environment. FEBS Letters, 2008, 582, 1960-1970.	2.8	23
179	Characterization of MRFAP1 Turnover and Interactions Downstream of the NEDD8 Pathway. Molecular and Cellular Proteomics, 2012, 11, M111.014407.	3.8	23
180	EMSY expression affects multiple components of the skin barrier with relevance to atopic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 144, 470-481.	2.9	23

#	Article	IF	CITATIONS
181	Erosion of human X chromosome inactivation causes major remodeling of the iPSC proteome. Cell Reports, 2021, 35, 109032.	6.4	23
182	Identification of peptide inhibitors of pre-mRNA splicing derived from the essential interaction domains of CDC5L and PLRG1. Nucleic Acids Research, 2003, 31, 6104-6116.	14.5	22
183	RNA-binding protein GLD-1/quaking genetically interacts with the <i>mir-35</i> and <i>the let-</i> 7 miRNA pathways in <i>Caenorhabditis elegans</i> . Open Biology, 2013, 3, 130151.	3.6	22
184	Running rings around RNA. Nature, 1999, 397, 655-656.	27.8	21
185	A novel function for human factor C1 (HCF-1), a host protein required for herpes simplex virus infection, in pre-mRNA splicing. EMBO Journal, 2002, 21, 6590-6602.	7.8	21
186	A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus, 2011, 2, 30-37.	2.2	21
187	Where in the cell is the minor spliceosome?. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8485-8486.	7.1	20
188	The control of stable RNA synthesis in bacteria. Trends in Biochemical Sciences, 1985, 10, 271-274.	7.5	19
189	RNA editing and the mysterious undercover genes of trypanosomatid mitochondria. Trends in Biochemical Sciences, 1988, 13, 283-284.	7.5	19
190	Exo70, a subunit of the exocyst complex, interacts with SNEVhPrp19/hPso4 and is involved in pre-mRNA splicing. Biochemical Journal, 2011, 438, 81-91.	3.7	19
191	The Encyclopedia of Proteome Dynamics: a big data ecosystem for (prote)omics. Nucleic Acids Research, 2018, 46, D1202-D1209.	14.5	19
192	Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells. Wellcome Open Research, 2018, 3, 51.	1.8	18
193	Inter-replicon transposition of Tn1/3 occurs in two sequential genetically separable steps. Nature, 1982, 295, 626-628.	27.8	17
194	Novel solid-phase synthesis of branched oligoribonucleotides, including a substrate for the RNA debranching enzyme. Journal of the Chemical Society Perkin Transactions 1, 1994, , 419-431.	0.9	17
195	Nuclear Organisation and Subnuclear Bodies. Progress in Molecular and Subcellular Biology, 2008, 35, 1-22.	1.6	17
196	A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus, 2011, 2, 30-37.	2.2	17
197	Nuclear dynamics: where genes are and how they got there. Genome Biology, 2001, 2, reviews0002.1.	9.6	16
198	Composition of the Survival Motor Neuron (SMN) Complex in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2019, 9, 491-503.	1.8	16

#	Article	IF	CITATIONS
199	DEPS-1 is required for piRNA-dependent silencing and PIWI condensate organisation in Caenorhabditis elegans. Nature Communications, 2020, 11, 4242.	12.8	16
200	Purification and Depletion of RNP Particles by Antisense Affinity Chromatography. , 1999, 118, 275-287.		15
201	hLodestar/HuF2 interacts with CDC5L and is involved in pre-mRNA splicing. Biochemical and Biophysical Research Communications, 2003, 308, 793-801.	2.1	15
202	CDK dependent phosphorylation of PHD1 on Serine 130 determines specificity in substrate targeting in cells. Journal of Cell Science, 2016, 129, 191-205.	2.0	15
203	A glimpse into the spliceosome. Current Biology, 1993, 3, 62-64.	3.9	14
204	Visualization of Intracellular PP1 Targeting Through Transiently and Stably Expressed Fluorescent Protein Fusions. , 2007, 365, 133-154.		14
205	Tissue environment, not ontogeny, defines murine intestinal intraepithelial T lymphocytes. ELife, 2021, 10, .	6.0	14
206	The Adenomatous Polyposis Coli Protein Contributes to Normal Compaction of Mitotic Chromatin. PLoS ONE, 2012, 7, e38102.	2.5	13
207	Functional and proteomic analysis of a full thickness filaggrin-deficient skin organoid model. Wellcome Open Research, 2019, 4, 134.	1.8	13
208	Tetrahymena telomerase contains an internal RNA template. Trends in Biochemical Sciences, 1989, 14, 202-204.	7.5	12
209	Blom7α Is a Novel Heterogeneous Nuclear Ribonucleoprotein K Homology Domain Protein Involved in Pre-mRNA Splicing That Interacts with SNEVPrp19-Pso4. Journal of Biological Chemistry, 2009, 284, 29193-29204.	3.4	12
210	The Chromatin Assembly Factor Complex 1 (CAF1) and 5-Azacytidine (5-AzaC) Affect Cell Motility in Src-transformed Human Epithelial Cells. Journal of Biological Chemistry, 2017, 292, 172-184.	3.4	12
211	Phosphoproteomics identifies a bimodal EPHA2 receptor switch that promotes embryonic stem cell differentiation. Nature Communications, 2020, 11, 1357.	12.8	12
212	FMN2 is a novel regulator of the cyclin-dependent kinase inhibitor p21. Cell Cycle, 2013, 12, 2348-2354.	2.6	11
213	Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development. Scientific Reports, 2017, 7, 4314.	3.3	11
214	Targeted Knock-Down of miR21 Primary Transcripts Using snoMEN Vectors Induces Apoptosis in Human Cancer Cell Lines. PLoS ONE, 2015, 10, e0138668.	2.5	11
215	RNA Processing: Wilms' tumour — the splicing connection?. Current Biology, 1995, 5, 862-865.	3.9	10
216	Evaluating the use of HILIC in large-scale, multi dimensional proteomics: Horses for courses?. International Journal of Mass Spectrometry, 2015, 391, 105-114.	1.5	10

#	Article	IF	CITATIONS
217	Studying pre-mRNA splicing using antisense 2-OMe RNA oligonucleotides. Molecular Biology Reports, 1990, 14, 201-201.	2.3	9
218	Quantitative Proteomic Analysis of the Human Nucleolus. Methods in Molecular Biology, 2016, 1455, 249-262.	0.9	9
219	The Encyclopedia of Proteome Dynamics: the KinoViewer. Bioinformatics, 2019, 35, 1441-1442.	4.1	9
220	PNAC: a protein nucleolar association classifier. BMC Genomics, 2011, 12, 74.	2.8	8
221	Proteomic analysis of a filaggrin-deficient skin organoid model shows evidence of increased transcriptional-translational activity, keratinocyte-immune crosstalk and disordered axon guidance. Wellcome Open Research, 2019, 4, 134.	1.8	8
222	2′-O-Alkyloligoribonucleotides: Probes for Studying the Biochemistry and Cell Biology of RNA Processing. Biochemical Society Transactions, 1993, 21, 1-8.	3.4	7
223	The nuclear ATPase/adenylate kinase hCINAP is recruited to perinucleolar caps generated upon RNA pol.II inhibition. FEBS Letters, 2010, 584, 4559-4564.	2.8	7
224	Analysis of Human Protein Replacement Stable Cell Lines Established using snoMEN-PR Vector. PLoS ONE, 2013, 8, e62305.	2.5	6
225	RNA polymerase II transcription in living color. Nature Structural and Molecular Biology, 2007, 14, 788-790.	8.2	5
226	Splicing in stereo. Nature, 1993, 365, 294-295.	27.8	4
227	Unlocking the chromatin code by deciphering protein– <scp>DNA</scp> interactions. Molecular Systems Biology, 2016, 12, 887.	7.2	3
228	Signal enhanced proteomics: a biological perspective on dissecting the functional organisation of cell proteomes. Current Opinion in Chemical Biology, 2019, 48, 114-122.	6.1	3
229	Efficient and Rapid Analysis of Polysomes and Ribosomal Subunits in Cells and Tissues Using Ribo Mega-SEC. Bio-protocol, 2021, 11, e4106.	0.4	3
230	New Apex in Proteome Analysis. Cell Systems, 2017, 4, 581-582.	6.2	2
231	Enhanced snoMEN Vectors Facilitate Establishment of GFP–HIF-1α Protein Replacement Human Cell Lines. PLoS ONE, 2016, 11, e0154759.	2.5	2
232	Multi-Protein Complexes Studied by Mass Spectrometry. Scientific World Journal, The, 2002, 2, 91-92.	2.1	1
233	Inhibition of Pre-mRNA Splicing by a Synthetic Blom7α-Interacting Small RNA. PLoS ONE, 2012, 7, e47497.	2.5	1
234	Time-Lapse Imaging of Nuclear Bodies. Methods in Molecular Biology, 2015, 1262, 55-67.	0.9	1

#	Article	IF	CITATIONS
235	Components involved in nuclear pre-mRNA splicing. Molecular Biology Reports, 1990, 14, 199-200.	2.3	0
236	Gene expression. Trends in Biochemical Sciences, 1993, 18, 149.	7.5	0
237	Characterization and Use of Wide-Field Fluorescence Microscopy and Image Restoration in Quantitative Live Cell Imaging. Microscopy and Microanalysis, 2002, 8, 266-267.	0.4	0
238	The Dynamic Proteome of the Nucleolus. , 2011, , 29-42.		0
239	Analysis of Mass Spectrometry Data for Nucleolar Proteomics Experiments. Methods in Molecular Biology, 2016, 1455, 263-276.	0.9	0