Janet A Willment

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5765037/publications.pdf

Version: 2024-02-01

		116194	190340
58	9,075	36	53
papers	citations	h-index	g-index
F.O.	F.O.	F0	0220
59	59	59	9339
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fcâ€conjugated Câ€type lectin receptors: Tools for understanding host–pathogen interactions. Molecular Microbiology, 2022, 117, 632-660.	1.2	14
2	Synthesis of the Fungal Metabolite YWA1 and Related Constructs as Tools to Study MelLec-Mediated Immune Response to <i>Aspergillus</i> Infections. Journal of Organic Chemistry, 2021, 86, 6044-6055.	1.7	3
3	MelLec Exacerbates the Pathogenesis of Aspergillus fumigatus-Induced Allergic Inflammation in Mice. Frontiers in Immunology, 2021, 12, 675702.	2.2	5
4	Characterization of antifungal Câ€type lectin receptor expression on murine epithelial and endothelial cells in mucosal tissues. European Journal of Immunology, 2021, 51, 2341-2344.	1.6	4
5	Quantifying Receptor-Mediated and to in Immune Cells. Methods in Molecular Biology, 2021, 2260, 155-178.	0.4	O
6	Complement-Mediated Differential Immune Response of Human Macrophages to Sporothrix Species Through Interaction With Their Cell Wall Peptidorhamnomannans. Frontiers in Immunology, 2021, 12, 749074.	2.2	9
7	The Role of RodA-Conserved Cysteine Residues in the Aspergillus fumigatus Conidial Surface Organization. Journal of Fungi (Basel, Switzerland), 2020, 6, 151.	1.5	9
8	PAMPs of the Fungal Cell Wall and Mammalian PRRs. Current Topics in Microbiology and Immunology, 2020, 425, 187-223.	0.7	29
9	Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathogens, 2020, 16, e1007927.	2.1	52
10	C-Type Lectin Receptors in Antifungal Immunity. Advances in Experimental Medicine and Biology, 2020, 1204, 1-30.	0.8	22
11	Câ€type lectin receptors of the Dectinâ€1 cluster: Physiological roles and involvement in disease. European Journal of Immunology, 2019, 49, 2127-2133.	1.6	55
12	\hat{l}^2 -Glucan Grafted Microcapsule, a Tool for Studying the Immunomodulatory Effect of Microbial Cell Wall Polysaccharides. Bioconjugate Chemistry, 2019, 30, 1788-1797.	1.8	3
13	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	13.7	157
14	Aspergillus-induced superoxide production by cystic fibrosis phagocytes is associated with disease severity. ERJ Open Research, 2018, 4, 00068-2017.	1.1	14
15	C-type lectins in immunity and homeostasis. Nature Reviews Immunology, 2018, 18, 374-389.	10.6	434
16	CLEC7A., 2018,, 1154-1161.		0
17	Dectin-1 (CLEC7A, BGR, CLECSF12). , 2016, , 51-63.		0

Signalling through MyD88 drives surface expression of the mycobacterial receptors MCL (Clecsf8,) Tj ETQq0 0 0 rg $_{1.0}^{BT}$ /Overlock 10 Tf 50 $_{24}^{CR}$

#	Article	IF	CITATIONS
19	MICL controls inflammation in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2016, 75, 1386-1391.	0.5	40
20	Mycobacterial receptor, Clec4d (CLECSF8, MCL), is coregulated with Mincle and upregulated on mouse myeloid cells following microbial challenge. European Journal of Immunology, 2016, 46, 381-389.	1.6	34
21	Characterisation of the murine C-type lectin receptor CLECSF8 (MCL) reveals its expression on cells of the monocyte/neutrophil lineages and an inter-dependence with Mincle, but not Dectin-2. Journal of Inflammation, 2015, 12, P4.	1.5	0
22	The C-Type Lectin Receptor CLECSF8/CLEC4D Is a Key Component of Anti-Mycobacterial Immunity. Cell Host and Microbe, 2015, 17, 252-259.	5.1	100
23	C-Type Lectin-Like Receptors of the Dectin-1 Cluster: Ligands and Signaling Pathways. International Reviews of Immunology, 2013, 32, 134-156.	1.5	178
24	The Dectin-2 family of C-type lectin-like receptors: an update. International Immunology, 2013, 25, 271-277.	1.8	156
25	The C-type Lectin Receptor CLECSF8 (CLEC4D) Is Expressed by Myeloid Cells and Triggers Cellular Activation through Syk Kinase. Journal of Biological Chemistry, 2012, 287, 25964-25974.	1.6	110
26	Podoplaninâ€expressing inflammatory macrophages activate murine platelets via CLECâ€2. Journal of Thrombosis and Haemostasis, 2012, 10, 484-486.	1.9	87
27	Characterisation of Innate Fungal Recognition in the Lung. PLoS ONE, 2012, 7, e35675.	1.1	45
28	Genetic Variation of Innate Immune Genes in HIV-Infected African Patients With or Without Oropharyngeal Candidiasis. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 55, 87-94.	0.9	48
29	CLEC-2 Is a Phagocytic Activation Receptor Expressed on Murine Peripheral Blood Neutrophils. Journal of Immunology, 2009, 182, 4150-4157.	0.4	111
30	Reciprocal regulation of ILâ€23 and ILâ€12 following coâ€activation of Dectinâ€1 and TLR signaling pathways. European Journal of Immunology, 2009, 39, 1379-1386.	1.6	159
31	Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections. New England Journal of Medicine, 2009, 361, 1760-1767.	13.9	671
32	Syk kinase is required for collaborative cytokine production induced through Dectinâ€1 and Tollâ€like receptors. European Journal of Immunology, 2008, 38, 500-506.	1.6	328
33	C-type lectin receptors in antifungal immunity. Trends in Microbiology, 2008, 16, 27-32.	3.5	232
34	CLEC9A Is a Novel Activation C-type Lectin-like Receptor Expressed on BDCA3+ Dendritic Cells and a Subset of Monocytes. Journal of Biological Chemistry, 2008, 283, 16693-16701.	1.6	272
35	Identification of long intergenic region sequences involved in maize streak virus replication. Journal of General Virology, 2007, 88, 1831-1841.	1.3	17
36	Dectin-1 promotes fungicidal activity of human neutrophils. European Journal of Immunology, 2007, 37, 467-478.	1.6	110

3

#	Article	IF	Citations
37	Dectin-1 is required for \hat{l}^2 -glucan recognition and control of fungal infection. Nature Immunology, 2007, 8, 31-38.	7.0	1,042
38	Soluble Dectin-1 as a tool to detect β-glucans. Journal of Immunological Methods, 2006, 314, 164-169.	0.6	107
39	Human MICL (CLEC12A) is differentially glycosylated and is down-regulated following cellular activation. European Journal of Immunology, 2006, 36, 2159-2169.	1.6	85
40	Expression of Functionally Different Dectin-1 Isoforms by Murine Macrophages. Journal of Immunology, 2006, 176, 5513-5518.	0.4	98
41	Comparison of lignin deposition in three ectopic lignification mutants. New Phytologist, 2005, 168, 123-140.	3 . 5	134
42	Kanamycin reveals the role played by glutamate receptors in shaping plant resource allocation. Plant Journal, 2005, 43, 348-355.	2.8	29
43	The human ?-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. European Journal of Immunology, 2005, 35, 1539-1547.	1.6	228
44	Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Journal of Experimental Botany, 2005, 56, 1651-1663.	2.4	137
45	The Role of SIGNR1 and the \hat{I}^2 -Glucan Receptor (Dectin-1) in the Nonopsonic Recognition of Yeast by Specific Macrophages. Journal of Immunology, 2004, 172, 1157-1162.	0.4	183
46	Identification and Characterization of a Novel Human Myeloid Inhibitory C-type Lectin-like Receptor (MICL) That Is Predominantly Expressed on Granulocytes and Monocytes. Journal of Biological Chemistry, 2004, 279, 14792-14802.	1.6	127
47	The Role of Dectin-1 in Antifungal Immunity. Critical Reviews in Immunology, 2004, 24, 193-204.	1.0	104
48	Dectin-1 Mediates the Biological Effects of \hat{l}^2 -Glucans. Journal of Experimental Medicine, 2003, 197, 1119-1124.	4.2	1,084
49	Dectin-1 Expression and Function Are Enhanced on Alternatively Activated and GM-CSF-Treated Macrophages and Are Negatively Regulated by IL-10, Dexamethasone, and Lipopolysaccharide. Journal of Immunology, 2003, 171, 4569-4573.	0.4	225
50	The Î ² -Glucan Receptor, Dectin-1, Is Predominantly Expressed on the Surface of Cells of the Monocyte/Macrophage and Neutrophil Lineages. Journal of Immunology, 2002, 169, 3876-3882.	0.4	580
51	Biological and Genomic Sequence Characterization of Maize streak virus Isolates from Wheat. Phytopathology, 2002, 92, 81-86.	1.1	25
52	Dectin-1 Is A Major \hat{l}^2 -Glucan Receptor On Macrophages. Journal of Experimental Medicine, 2002, 196, 407-412.	4.2	902
53	The relative infectivities and genomic characterisation of three distinct mastreviruses from South Africa. Archives of Virology, 2001, 146, 1075-1088.	0.9	35
54	Analysis of the diversity of African streak mastreviruses using PCR-generated RFLPs and partial sequence data. Journal of Virological Methods, 2001, 93, 75-87.	1.0	40

#	Article	IF	CITATIONS
55	Characterization of the Human \hat{l}^2 -Glucan Receptor and Its Alternatively Spliced Isoforms. Journal of Biological Chemistry, 2001, 276, 43818-43823.	1.6	279
56	Forced recombination between distinct strains of Maize streak virus. Journal of General Virology, 2001, 82, 3081-3090.	1.3	40
57	Evaluation of Maize Streak Virus Pathogenicity in Differentially Resistant Zea mays Genotypes. Phytopathology, 1999, 89, 695-700.	1.1	57
58	Dectin-1. The AFCS-nature Molecule Pages, 0, , .	0.2	2