M W Liemohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5764635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dominant role of the asymmetric ring current in producing the stormtimeDst*. Journal of Geophysical Research, 2001, 106, 10883-10904.	3.3	288
2	Geomagnetic storms driven by ICME- and CIR-dominated solar wind. Journal of Geophysical Research, 2006, 111, .	3.3	199
3	How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape. Astrophysical Journal Letters, 2017, 836, L3.	8.3	185
4	Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophysical Research Letters, 1999, 26, 2845-2848.	4.0	162
5	Bulk plasma properties at geosynchronous orbit. Journal of Geophysical Research, 2005, 110, .	3.3	135
6	A model-derived storm time asymmetric ring current driven electric field description. Journal of Geophysical Research, 2002, 107, SMP 2-1-SMP 2-12.	3.3	131
7	Ring Current Energy Input and Decay. Space Science Reviews, 2003, 109, 105-131.	8.1	112
8	MultistepDstdevelopment and ring current composition changes during the 4-6 June 1991 magnetic storm. Journal of Geophysical Research, 2002, 107, SMP 33-1-SMP 33-22.	3.3	108
9	A comparison of global models for the solar wind interaction with Mars. Icarus, 2010, 206, 139-151.	2.5	108
10	Martian lowâ€altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 2017, 122, 1831-1852.	2.4	107
11	Intense space storms: Critical issues and open disputes. Journal of Geophysical Research, 2003, 108, .	3.3	92
12	Computational analysis of the near-Earth magnetospheric current system during two-phase decay storms. Journal of Geophysical Research, 2001, 106, 29531-29542.	3.3	88
13	Locations of Atmospheric Photoelectron Energy Peaks Within the Mars Environment. Space Science Reviews, 2007, 126, 389-402.	8.1	81
14	Pickup oxygen ion velocity space and spatial distribution around Mars. Journal of Geophysical Research, 2008, 113, .	3.3	80
15	Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm. Journal of Geophysical Research, 2004, 109, .	3.3	77
16	A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years. Journal of Geophysical Research, 2004, 109, .	3.3	76
17	Current Systems in the Earth's Magnetosphere. Reviews of Geophysics, 2018, 56, 309-332.	23.0	76
18	Origin and evolution of deep plasmaspheric notches. Journal of Geophysical Research, 2005, 110, .	3.3	68

2

#	Article	IF	CITATIONS
19	Photoelectron effects on the self-consistent potential in the collisionless polar wind. Journal of Geophysical Research, 1997, 102, 7509-7521.	3.3	66
20	Defining and resolving current systems in geospace. Annales Geophysicae, 2015, 33, 1369-1402.	1.6	66
21	Parametric analysis of nightside conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. Journal of Geophysical Research, 2005, 110, .	3.3	65
22	Yet another caveat to using the Dessler-Parker-Sckopke relation. Journal of Geophysical Research, 2003, 108, .	3.3	64
23	Transport of the plasma sheet electrons to the geostationary distances. Journal of Geophysical Research: Space Physics, 2013, 118, 82-98.	2.4	63
24	Model Evaluation Guidelines for Geomagnetic Index Predictions. Space Weather, 2018, 16, 2079-2102.	3.7	62
25	First medium energy neutral atom (MENA) Images of Earth's magnetosphere during substorm and storm-time. Geophysical Research Letters, 2001, 28, 1147-1150.	4.0	61
26	On the effect of the martian crustal magnetic field on atmospheric erosion. Icarus, 2010, 206, 130-138.	2.5	57
27	Numerical interpretation of high-altitude photoelectron observations. Icarus, 2006, 182, 383-395.	2.5	56
28	Nonsteady state ionosphere-plasmasphere coupling of superthermal electrons. Journal of Geophysical Research, 1995, 100, 9669.	3.3	54
29	The Earth: Plasma Sources, Losses, and Transport Processes. Space Science Reviews, 2015, 192, 145-208.	8.1	54
30	Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophysical Research Letters, 2016, 43, 8876-8884.	4.0	54
31	Understanding storm-time ring current development through data-model comparisons of a moderate storm. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	51
32	Comparative pick-up ion distributions at Mars and Venus: Consequences for atmospheric deposition and escape. Planetary and Space Science, 2015, 115, 35-47.	1.7	51
33	Statistical study of the subauroral polarization stream: Its dependence on the cross–polar cap potential and subauroral conductance. Journal of Geophysical Research, 2008, 113, .	3.3	50
34	Recent Progress in Physics-Based Models ofÂtheÂPlasmasphere. Space Science Reviews, 2009, 145, 193-229.	8.1	50
35	Ionospheric photoelectrons at Venus: Initial observations by ASPERA-4 ELS. Planetary and Space Science, 2008, 56, 802-806.	1.7	48
36	Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes. Space Weather, 2016, 14, 151-164.	3.7	47

#	Article	IF	CITATIONS
37	A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum. Journal of Geophysical Research, 2006, 111, .	3.3	46
38	The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophysical Research Letters, 2013, 40, 1922-1927.	4.0	45
39	Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources. Journal of Geophysical Research, 2005, 110, .	3.3	43
40	The impact of geocoronal density on ring current development. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 99, 92-103.	1.6	43
41	RMSE is not enough: Guidelines to robust data-model comparisons for magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 218, 105624.	1.6	43
42	Distortions of the magnetic field by storm-time current systems in Earth's magnetosphere. Annales Geophysicae, 2010, 28, 123-140.	1.6	41
43	Hot carbon densities in the exosphere of Mars. Journal of Geophysical Research, 2001, 106, 21565-21568.	3.3	38
44	Self-consistent magnetosphere-ionosphere coupling: Theoretical studies. Journal of Geophysical Research, 2003, 108, .	3.3	38
45	Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen. Icarus, 2010, 206, 50-63.	2.5	38
46	Space Weather Effects Produced by the Ring Current Particles. Space Science Reviews, 2017, 212, 1315-1344.	8.1	38
47	Analyzing electric field morphology through data-model comparisons of the Geospace Environment Modeling Inner Magnetosphere/Storm Assessment Challenge events. Journal of Geophysical Research, 2006, 111, .	3.3	37
48	Nonâ€steadyâ€state transport of superthermal electrons in the plasmasphere. Geophysical Research Letters, 1993, 20, 2821-2824.	4.0	36
49	Escape probability of Martian atmospheric ions: Controlling effects of the electromagnetic fields. Journal of Geophysical Research, 2010, 115, .	3.3	36
50	Self-consistent superthermal electron effects on plasmaspheric refilling. Journal of Geophysical Research, 1997, 102, 7523-7536.	3.3	35
51	Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with aBfield-dependent transport code. Journal of Geophysical Research, 2003, 108, .	3.3	35
52	Interchange Injections at Saturn: Statistical Survey of Energetic H ⁺ Sudden Flux Intensifications. Journal of Geophysical Research: Space Physics, 2018, 123, 4692-4711.	2.4	35
53	Magnetospheric convection electric field dynamics andstormtime particle energization: case study of the magneticstorm of 4 May 1998. Annales Geophysicae, 2004, 22, 497-510.	1.6	34
54	Statistical analysis of the geomagnetic response to different solar wind drivers and the dependence on storm intensity. Journal of Geophysical Research: Space Physics, 2015, 120, 310-327.	2.4	34

#	Article	IF	CITATIONS
55	Pressure and ion composition boundaries at Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 6417-6429.	2.4	34
56	Consequences of a saturated convection electric field on the ring current. Geophysical Research Letters, 2002, 29, 62-1-62-4.	4.0	33
57	Lowâ€energy electrons (5–50 keV) in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 246-259.	2.4	33
58	The twoâ€way relationship between ionospheric outflow and the ring current. Journal of Geophysical Research: Space Physics, 2015, 120, 4338-4353.	2.4	33
59	Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations. Journal of Geophysical Research: Space Physics, 2016, 121, 8859-8870.	2.4	33
60	Evolution of the proton ring current energy distribution during 21–25 April 2001 storm. Journal of Geophysical Research, 2006, 111, .	3.3	32
61	Realâ€Time SWMF at CCMC: Assessing the Dst Output From Continuous Operational Simulations. Space Weather, 2018, 16, 1583-1603.	3.7	32
62	What sustained multi-disciplinary research can achieve: The space weather modeling framework. Journal of Space Weather and Space Climate, 2021, 11, 42.	3.3	32
63	Ring current heating of the thermal electrons at solar maximum. Journal of Geophysical Research, 2000, 105, 27767-27776.	3.3	31
64	Mars Global MHD Predictions of Magnetic Connectivity Between the Dayside Ionosphere and the Magnetospheric Flanks. Space Science Reviews, 2007, 126, 63-76.	8.1	31
65	The influence of production mechanisms on pickâ€up ion loss at Mars. Journal of Geophysical Research: Space Physics, 2013, 118, 554-569.	2.4	31
66	Solar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fields. Journal of Geophysical Research: Space Physics, 2014, 119, 10,100.	2.4	31
67	Generalized kinetic description of a plasma in an arbitrary field-aligned potential energy structure. Journal of Geophysical Research, 1998, 103, 6871-6889.	3.3	30
68	Observations and Modeling of the Mars Lowâ€Altitude Ionospheric Response to the 10 September 2017 Xâ€Class Solar Flare. Geophysical Research Letters, 2018, 45, 7382-7390.	4.0	30
69	Self-consistent model of magnetospheric ring current and propagating electromagnetic ion cyclotron waves: 2. Wave-induced ring current precipitation and thermal electron heating. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	29
70	Integration of the radiation belt environment model into the space weather modeling framework. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1653-1663.	1.6	29
71	Dayside midlatitude ionospheric response to storm time electric fields: A case study for 7 September 2002. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29
72	Pressure anisotropy in global magnetospheric simulations: A magnetohydrodynamics model. Journal of Geophysical Research, 2012, 117, .	3.3	29

#	Article	IF	CITATIONS
73	Evidence for potential and inductive convection during intense geomagnetic events using normalized superposed epoch analysis. Journal of Geophysical Research: Space Physics, 2013, 118, 181-191.	2.4	29
74	The magnetospheric banana current. Journal of Geophysical Research: Space Physics, 2013, 118, 1009-1021.	2.4	29
75	Mars nightside electrons over strong crustal fields. Journal of Geophysical Research: Space Physics, 2016, 121, 3808-3823.	2.4	29
76	Numerical modeling of the magnetic topology near Mars auroral observations. Geophysical Research Letters, 2007, 34, .	4.0	28
77	Storm-time ring current: model-dependent results. Annales Geophysicae, 2012, 30, 177-202.	1.6	28
78	Similarities and differences in low- to middle-latitude geomagnetic indices. Journal of Geophysical Research: Space Physics, 2013, 118, 5149-5156.	2.4	28
79	The outflow of ionospheric nitrogen ions: A possible tracer for the altitudeâ€dependent transport and energization processes of ionospheric plasma. Journal of Geophysical Research: Space Physics, 2016, 121, 9250-9255.	2.4	28
80	Martian highâ€altitude photoelectrons independent of solar zenith angle. Journal of Geophysical Research: Space Physics, 2016, 121, 3767-3780.	2.4	28
81	Lower hybrid turbulence and ponderomotive force effects in space plasmas subjected to large-amplitude low-frequency waves. Geophysical Research Letters, 1996, 23, 797-800.	4.0	27
82	Influence of epoch time selection on the results of superposed epoch analysis using ACE and MPA data. Journal of Geophysical Research, 2008, 113, .	3.3	27
83	CIR versus CME drivers of the ring current during intense magnetic storms. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 3305-3328.	2.1	27
84	Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. Journal of Geophysical Research: Space Physics, 2014, 119, 2691-2705.	2.4	27
85	Contribution from different current systems to <i>SYM</i> and <i>ASY</i> midlatitude indices. Journal of Geophysical Research: Space Physics, 2014, 119, 7243-7263.	2.4	27
86	Recommendations for Nextâ€Generation Ground Magnetic Perturbation Validation. Space Weather, 2018, 16, 1912-1920.	3.7	27
87	Association of Low-Charge-State Heavy Ions up to 200 Reupstream of the Earth's bow shock with geomagnetic disturbances. Geophysical Research Letters, 2002, 29, 3-1.	4.0	26
88	Adiabatic energization in the ring current and its relation to other source and loss terms. Journal of Geophysical Research, 2002, 107, SMP 4-1.	3.3	26
89	Lognormal form of the ring current energy content. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 871-886.	1.6	26
90	Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 1. Patterns. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	25

#	Article	IF	CITATIONS
91	Comparison of different solar irradiance models for the superthermal electron transport model for Mars. Planetary and Space Science, 2015, 119, 62-68.	1.7	25
92	Enhanced carbon dioxide causing the dust stormâ€related increase in highâ€eltitude photoelectron fluxes at Mars. Geophysical Research Letters, 2015, 42, 9702-9710.	4.0	25
93	Statistical storm time examination of MLTâ€dependent plasmapause location derived from IMAGE EUV. Journal of Geophysical Research: Space Physics, 2015, 120, 5545-5559.	2.4	25
94	Photoelectrons in the quiet polar wind. Journal of Geophysical Research: Space Physics, 2017, 122, 6708-6726.	2.4	25
95	The plasmasphere and advances in plasmaspheric research. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1647-1657.	1.6	24
96	Ring current simulations of the 90 intense storms during solar cycle 23. Journal of Geophysical Research, 2008, 113, .	3.3	24
97	Kinetic model of the inner magnetosphere with arbitrary magnetic field. Journal of Geophysical Research, 2012, 117, .	3.3	24
98	Superthermal electron transport model for Mars. Earth and Space Science, 2015, 2, 47-64.	2.6	24
99	A new solar windâ€driven global dynamic plasmapause model: 2. Model and validation. Journal of Geophysical Research: Space Physics, 2017, 122, 7172-7187.	2.4	24
100	Conductance Model for Extreme Events: Impact of Auroral Conductance on Space Weather Forecasts. Space Weather, 2020, 18, e2020SW002551.	3.7	24
101	Stormtime particle energization with high temporal resolution AMIE potentials. Journal of Geophysical Research, 2004, 109, .	3.3	23
102	Introduction to special section on "Results of the National Science Foundation Geospace Environment Modeling Inner Magnetosphere/Storms Assessment Challenge― Journal of Geophysical Research, 2006, 111, .	3.3	23
103	Selfâ€consistent model of magnetospheric electric field, ring current, plasmasphere, and electromagnetic ion cyclotron waves: Initial results. Journal of Geophysical Research, 2009, 114, .	3.3	23
104	Earth's collision with a solar filament on 21 January 2005: Overview. Journal of Geophysical Research: Space Physics, 2013, 118, 5967-5978.	2.4	23
105	Collisionless plasma modeling in an arbitrary potential energy distribution. Physics of Plasmas, 1998, 5, 580-589.	1.9	22
106	Quantification of the spreading effect of auroral proton precipitation. Journal of Geophysical Research, 2004, 109, .	3.3	22
107	Global, collisional model of high-energy photoelectrons. Geophysical Research Letters, 1996, 23, 331-334.	4.0	21
108	Deciphering magnetospheric cross-field currents. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	21

#	Article	IF	CITATIONS
109	Test particle comparison of heavy atomic and molecular ion distributions at Mars. Journal of Geophysical Research: Space Physics, 2014, 119, 2328-2344.	2.4	21
110	Mars Express observations of high altitude planetary ion beams and their relation to the "energetic plume―loss channel. Journal of Geophysical Research: Space Physics, 2014, 119, 9702-9713.	2.4	21
111	Banded electron structure formation in the inner magnetosphere. Geophysical Research Letters, 1998, 25, 877-880.	4.0	20
112	Inner magnetospheric superthermal electron transport: Photoelectron and plasma sheet electron sources. Journal of Geophysical Research, 1998, 103, 23485-23501.	3.3	20
113	Nonlinear kinetic modeling of early stage plasmaspheric refilling. Journal of Geophysical Research, 1999, 104, 10295-10306.	3.3	20
114	Plasma properties of superstorms at geosynchronous orbit: How different are they?. Geophysical Research Letters, 2008, 35, .	4.0	20
115	An investigation of the magnetosphere–ionosphere response to real and idealized co-rotating interaction region events through global magnetohydrodynamic simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 3279-3303.	2.1	20
116	The effect of smoothed solar wind inputs on global modeling results. Journal of Geophysical Research, 2010, 115, .	3.3	20
117	Is the storm time response of the inner magnetospheric hot ions universally similar or driver dependent?. Journal of Geophysical Research, 2012, 117, .	3.3	20
118	Solar filament impact on 21 January 2005: Geospace consequences. Journal of Geophysical Research: Space Physics, 2014, 119, 5401-5448.	2.4	20
119	A statistical comparison of hot-ion properties at geosynchronous orbit during intense and moderate geomagnetic storms at solar maximum and minimum. Journal of Geophysical Research, 2006, 111, .	3.3	19
120	Guided plasmaspheric hiss interactions with superthermal electrons: 1. Resonance curves and timescales. Journal of Geophysical Research, 1997, 102, 11619-11623.	3.3	17
121	Lower hybrid oscillations in multicomponent space plasmas subjected to ion cyclotron waves. Journal of Geophysical Research, 1997, 102, 175-184.	3.3	17
122	Comment on "Nonlinear response of the polar ionosphere to large values of the interplanetary electric field―by C. T. Russell et al Journal of Geophysical Research, 2002, 107, SIA 13-1-SIA 13-4.	3.3	17
123	Reconciling prediction algorithms forDst. Journal of Geophysical Research, 2005, 110, .	3.3	17
124	Testing the Hypothesis That Charge Exchange Can Cause a Two-Phase Decay. Geophysical Monograph Series, 0, , 211-225.	0.1	17
125	Geometry of duskside equatorial current during magnetic storm main phase as deduced from magnetospheric and low-altitude observations. Annales Geophysicae, 2013, 31, 395-408.	1.6	17
126	Assessing the role of oxygen on ring current formation and evolution through numerical experiments. Journal of Geophysical Research: Space Physics, 2015, 120, 4656-4668.	2.4	17

#	Article	IF	CITATIONS
127	Postmidnight depletion of the highâ€energy tail of the quiet plasmasphere. Journal of Geophysical Research: Space Physics, 2015, 120, 1646-1660.	2.4	17
128	Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF. Journal of Geophysical Research: Space Physics, 2016, 121, 2033-2045.	2.4	17
129	Ionospheric control of the dawnâ€dusk asymmetry of the Mars magnetotail current sheet. Journal of Geophysical Research: Space Physics, 2017, 122, 6397-6414.	2.4	17
130	Validation of Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) With Longâ€Term GOES MAGED Measurements of keV Electron Fluxes at Geostationary Orbit. Space Weather, 2019, 17, 687-708.	3.7	17
131	The relationship of storms and substorms determined from mid-latitude ground-based magnetic maps. Geophysical Monograph Series, 2003, , 143-157.	0.1	16
132	Occurrence statistics of cold, streaming ions in the near-Earth magnetotail: Survey of Polar-TIDE observations. Journal of Geophysical Research, 2005, 110, .	3.3	16
133	Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 2. Conductances and beam spreading. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	16
134	Time-history influence of global dust storms on the upper atmosphere at Mars. Geophysical Research Letters, 2012, 39, n/a-n/a.	4.0	16
135	A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres. Space Science Reviews, 2015, 192, 27-89.	8.1	16
136	The ionospheric source of magnetospheric plasma is not a black box input for global models. Journal of Geophysical Research: Space Physics, 2016, 121, 5559-5565.	2.4	16
137	A new solar windâ€driven global dynamic plasmapause model: 1. Database and statistics. Journal of Geophysical Research: Space Physics, 2017, 122, 7153-7171.	2.4	16
138	Electric Mars: A large transâ€ŧerminator electric potential drop on closed magnetic field lines above Utopia Planitia. Journal of Geophysical Research: Space Physics, 2017, 122, 2260-2271.	2.4	16
139	Challenges associated with nearâ€Earth nightside current. Journal of Geophysical Research: Space Physics, 2016, 121, 6763-6768.	2.4	15
140	Small-scale structure in the stormtime ring current. Geophysical Monograph Series, 2005, , 167-177.	0.1	14
141	Inner magnetosphere currents during the CIR/HSS storm on July 21–23, 2009. Journal of Geophysical Research, 2012, 117, .	3.3	14
142	The effect of ring current electron scattering rates on magnetosphereâ€ionosphere coupling. Journal of Geophysical Research: Space Physics, 2017, 122, 4168-4189.	2.4	14
143	Solar Wind Interaction With the Martian Upper Atmosphere: Roles of the Cold Thermosphere and Hot Oxygen Corona. Journal of Geophysical Research: Space Physics, 2018, 123, 6639-6654.	2.4	14
144	Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 3. Impact on the ionosphere and thermosphere. Journal of Geophysical Research, 2007, 112, .	3.3	13

#	Article	IF	CITATIONS
145	Mars photoelectron energy and pitch angle dependence on intense lower atmospheric dust storms. Journal of Geophysical Research E: Planets, 2014, 119, 1689-1706.	3.6	13
146	Application usability levels: a framework for tracking project product progress. Journal of Space Weather and Space Climate, 2019, 9, A34.	3.3	13
147	Incorporating Physical Knowledge Into Machine Learning for Planetary Space Physics. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	13
148	Worstâ€Case Severe Environments for Surface Charging Observed at LANL Satellites as Dependent on Solar Wind and Geomagnetic Conditions. Space Weather, 2021, 19, e2021SW002732.	3.7	13
149	Recent Progress in Physics-Based Models ofÂtheÂPlasmasphere. , 2009, , 193-229.		13
150	Relativistic electron beam propagation in the Earth's magnetosphere. Journal of Geophysical Research, 1999, 104, 28587-28599.	3.3	12
151	Solar and ionospheric plasmas in the ring current region. Geophysical Monograph Series, 2005, , 179-194.	0.1	12
152	Study of the proton arc spreading effect on primary ionization rates. Journal of Geophysical Research, 2005, 110, .	3.3	12
153	Magnetospheric cross-field currents during the January 6–7, 2011 high-speed stream-driven interval. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 99, 78-84.	1.6	12
154	Statistical analysis of storm-time near-Earth current systems. Annales Geophysicae, 2015, 33, 965-982.	1.6	12
155	High itation Papers in Space Physics: Examination of Gender, Country, and Paper Characteristics. Journal of Geophysical Research: Space Physics, 2018, 123, 2557-2565.	2.4	12
156	Interhemispheric transport of relativistic electron beams. Geophysical Research Letters, 1999, 26, 581-584.	4.0	11
157	Global energy deposition to the topside ionosphere from superthermal electrons. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 947-954.	1.6	11
158	Photoelectrons on closed crustal field lines at Mars. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
159	Relationship between sawtooth events and magnetic storms. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
160	Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars. Journal of Geophysical Research: Space Physics, 2013, 118, 3700-3711.	2.4	11
161	Local time variations of highâ€energy plasmaspheric ion pitch angle distributions. Journal of Geophysical Research: Space Physics, 2016, 121, 6234-6244.	2.4	11
162	Are Saturn's Interchange Injections Organized by Rotational Longitude?. Journal of Geophysical Research: Space Physics, 2019, 124, 1806-1822.	2.4	11

#	Article	IF	CITATIONS
163	Nonsteady state coupling processes in superthermal electron transport. Geophysical Monograph Series, 1995, , 181-191.	0.1	10
164	Continued convection and the initial recovery ofDst. Geophysical Research Letters, 2002, 29, 58-1-58-4.	4.0	10
165	Exploring the efficacy of different electric field models in driving a model of the plasmasphere. Journal of Geophysical Research: Space Physics, 2014, 119, 4621-4638.	2.4	10
166	Testing the magnetotail configuration based on observations of lowâ€eltitude isotropic boundaries during quiet times. Journal of Geophysical Research: Space Physics, 2015, 120, 10,557.	2.4	10
167	The Case for Improving the Robinson Formulas. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028332.	2.4	10
168	Current-produced magnetic field effects on current collection. Journal of Geophysical Research, 2000, 105, 15835-15842.	3.3	9
169	Current-induced magnetic field effects on bare tether current collection: A parametric study. Journal of Geophysical Research, 2001, 106, 10565-10579.	3.3	9
170	Transport of photoelectrons in the nightside magnetosphere. Journal of Geophysical Research, 2002, 107, SMP 10-1.	3.3	9
171	Modeling the ring current response to a sawtooth oscillation event. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 67-76.	1.6	9
172	Comparison of highâ€altitude production and ionospheric outflow contributions to O ⁺ loss at Mars. Journal of Geophysical Research: Space Physics, 2013, 118, 4093-4107.	2.4	9
173	Misbehaving Highâ€Energy Electrons: Evidence in Support of Ubiquitous Waveâ€Particle Interactions on Dayside Martian Closed Crustal Magnetic Fields. Geophysical Research Letters, 2019, 46, 11689-11697.	4.0	9
174	Alfvén waves as a source of lower-hybrid activity in the ring current region. Journal of Geophysical Research, 2000, 105, 5403-5409.	3.3	8
175	Storm time duskside equatorial current and its closure path. Journal of Geophysical Research: Space Physics, 2013, 118, 5616-5625.	2.4	8
176	Calculating the inductive electric field in the terrestrial magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 5391-5403.	2.4	8
177	Recent Advancements and Remaining Challenges Associated With Inner Magnetosphere Crossâ€Energy/Population Interactions (IMCEPI). Journal of Geophysical Research: Space Physics, 2019, 124, 886-897.	2.4	8
178	On the influence of the initial pitch angle distribution on relativistic electron beam dynamics. Journal of Geophysical Research, 2000, 105, 16093-16094.	3.3	7
179	Superthermal electron energy interchange in the ionosphereâ€plasmasphere system. Journal of Geophysical Research: Space Physics, 2013, 118, 925-934.	2.4	7
180	A model for lower hybrid wave excitation compared with observations by Viking. Geophysical Research Letters, 1997, 24, 2399-2402.	4.0	6

#	Article	IF	CITATIONS
181	Energetic neutral particles detection in the environment of Jupiter's icy moons: Ganymede's and Europa's neutral imaging experiment (GENIE). Planetary and Space Science, 2013, 88, 53-63.	1.7	6
182	Influence of the Interplanetary Convective Electric Field on the Distribution of Heavy Pickup Ions Around Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 473-484.	2.4	6
183	Global Magnetohydrodynamic Simulations: Performance Quantification of Magnetopause Distances and Convection Potential Predictions. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	6
184	Testing the necessity of transient spikes in the storm time ring current drivers. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	5
185	On the Accuracy of Reconstructing Plasma Sheet Electron Fluxes From Temperature and Density Models. Space Weather, 2019, 17, 1704-1719.	3.7	5
186	Mars Global MHD Predictions of Magnetic Connectivity between the Dayside ionosphere and the Magnetospheric Flanks. , 2007, , 63-76.		5
187	Upstream magnetospheric ion flux tube within a magnetic cloud: Wind/STICS. Geophysical Research Letters, 2003, 30, .	4.0	4
188	Parameterization of Ring Current Adiabatic Energization. Geophysical Monograph Series, 0, , 215-229.	0.1	4
189	Storm time equatorial magnetospheric ion temperature derived from TWINS ENA flux. Journal of Geophysical Research: Space Physics, 2017, 122, 3985-3996.	2.4	4
190	Transient Ionospheric Upflow Driven by Poleward Moving Auroral forms Observed During the Rocket Experiment for Neutral Upwelling 2 (RENU2) Campaign. Geophysical Research Letters, 2019, 46, 6297-6305.	4.0	4
191	The STONE Curve: A ROCâ€Đerived Model Performance Assessment Tool. Earth and Space Science, 2020, 7, e2020EA001106.	2.6	4
192	Improvement of Plasma Sheet Neural Network Accuracy With Inclusion of Physical Information. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	4
193	Whistler Wave Interactions With Superthermal Electrons on Martian Crustal Magnetic Fields: Bounceâ€Averaged Diffusion Coefficients and Time Scales. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029118.	2.4	4
194	Ring Current Energy Input and Decay. , 2003, , 105-131.		4
195	Global Driving of Auroral Precipitation: 1. Balance of Sources. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
196	Nonlinear drift-kinetic equation in the presence of a circularly polarized wave. Planetary and Space Science, 2004, 52, 945-951.	1.7	3
197	Hot carbon densities in the exosphere of Venus. Journal of Geophysical Research, 2004, 109,	3.3	3
198	Hiss or equatorial noise? Ambiguities in analyzing suprathermal ion plasma wave resonance. Journal of Geophysical Research: Space Physics, 2016, 121, 9619-9631.	2.4	3

#	Article	IF	CITATIONS
199	The Earth: Plasma Sources, Losses, and Transport Processes. Space Sciences Series of ISSI, 2016, , 145-208.	0.0	3
200	Impact of Special Collections in JGR Space Physics. Journal of Geophysical Research: Space Physics, 2019, 124, 9857-9865.	2.4	3
201	Modeling the Energetic Particles of the Inner Magnetosphere. , 2016, , 102-147.		3
202	Modeling Waveâ€Particle Interactions With Photoelectrons on the Dayside Crustal Fields of Mars. Geophysical Research Letters, 2022, 49, e2021GL096941.	4.0	3
203	Analysis of Features in a Sliding Threshold of Observation for Numeric Evaluation (STONE) Curve. Space Weather, 2022, 20, .	3.7	3
204	Effects of various transport processes on the streaming ion density during the first stage of plasmaspheric refilling. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 437-447.	1.6	2
205	Geospace activity dependence of cold, streaming ions in the near-Earth magnetotail. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 135-141.	1.6	2
206	Time Scales for Localized Radiation Belt Injections to Become a Thin Shell. Geophysical Monograph Series, 0, , 161-176.	0.1	2
207	Ionospheric electron number densities from CUTLASS dualâ€frequency velocity measurements using artificial backscatter over EISCAT. Journal of Geophysical Research: Space Physics, 2016, 121, 8066-8076.	2.4	2
208	Steady State Characteristics of the Terrestrial Geopauses. Journal of Geophysical Research: Space Physics, 2019, 124, 5070-5081.	2.4	2
209	Charge-Exchange Byproduct Cold Protons in the Earth's Magnetosphere. Frontiers in Astronomy and Space Sciences, 2022, 8, .	2.8	2
210	Correction to "Self-Consistent Magnetosphere-Ionosphere Coupling: Theoretical Studies― Journal of Geophysical Research, 2003, 108, .	3.3	1
211	Reply to Comment on "Unraveling the Causes of Radiation Belt Enhancements― Eos, 2008, 89, 379-379.	0.1	1
212	Determining the Significance of Electrodynamic Coupling Between Superthermal Electrons and Thermal Plasma. Geophysical Monograph Series, 2013, , 343-348.	0.1	1
213	Can ring current stabilize magnetotail during steady magnetospheric convection?. Journal of Geophysical Research: Space Physics, 2015, 120, 10,528.	2.4	1
214	Editorial: Reviewer selection process and new areas of expertise in GEMS. Journal of Geophysical Research: Space Physics, 2016, 121, 5566-5570.	2.4	1
215	Geomagnetic disturbance intensity dependence on the universal timing of the storm peak. Journal of Geophysical Research: Space Physics, 2016, 121, 7561-7571.	2.4	1
216	Appreciation of the 2015 JGR Space Physics peer reviewers. Journal of Geophysical Research: Space Physics, 2016, 121, 3824-3863.	2.4	1

#	Article	IF	CITATIONS
217	Editorial: Thanking the JGR Space Physics reviewers of 2016. Journal of Geophysical Research: Space Physics, 2017, 122, 5528-5538.	2.4	1
218	Editorial: Thank You to the 2017 JGR Space Physics Reviewers. Journal of Geophysical Research: Space Physics, 2018, 123, 4510-4516.	2.4	1
219	Editorial Honoring the 2018 Reviewers for JGR Space Physics. Journal of Geophysical Research: Space Physics, 2019, 124, 3848-3857.	2.4	1
220	Editorial: Multiyear Analysis of JGR Space Physics Reviewing Statistics. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027719.	2.4	1
221	Locations of Atmospheric Photoelectron Energy Peaks Within the Mars Environment. , 2007, , 389-402.		1
222	Asymmetric interaction of a solar wind reconnecting current sheet and its magnetic hole with Earth's bow shock and magnetopause. Journal of Geophysical Research: Space Physics, 0, , .	2.4	1
223	Turning Instrument Background Into Science Data for Structural Features of Radiation Belts. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	1
224	On radar sounding applications for Enceladean ice. , 2010, , .		0
225	Comparison of Photoelectron Theory Against Observations. Geophysical Monograph Series, 2013, , 333-341.	0.1	0
226	Preface to the Special Collection: Recollections in Space Physics. Journal of Geophysical Research: Space Physics, 2019, 124, 8318-8318.	2.4	0
227	Thank You to Our 2019 Reviewers. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028092.	2.4	0
228	A Review of General Physical and Chemical Processes Related to Plasma Sources and Losses for Solar System Magnetospheres. Space Sciences Series of ISSI, 2016, , 27-89.	0.0	0
229	Space Weather Effects Produced by the Ring Current Particles. Space Sciences Series of ISSI, 2017, , 431-460.	0.0	0
230	Editorial: Impact of special collections in JGR Space Physics. , 0, , .		0
231	Editorial: Impact of special collections in JCR Space Physics. , 0, , .		0