Dan Dalacu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576439/publications.pdf

Version: 2024-02-01

44 papers

2,019 citations

257101 24 h-index 264894 42 g-index

44 all docs

44 docs citations

44 times ranked 2119 citing authors

#	Article	IF	CITATIONS
1	Observation of strongly entangled photon pairs from a nanowire quantum dot. Nature Communications, 2014, 5, 5298.	5.8	179
2	Deterministic Integration of Single Photon Sources in Silicon Based Photonic Circuits. Nano Letters, 2016, 16, 2289-2294.	4.5	151
3	Ultraclean Emission from InAsP Quantum Dots in Defect-Free Wurtzite InP Nanowires. Nano Letters, 2012, 12, 5919-5923.	4.5	144
4	On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nature Communications, 2017, 8, 379.	5.8	134
5	Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology, 2009, 20, 395602.	1.3	108
6	Nanowire Waveguides Launching Single Photons in a Gaussian Mode for Ideal Fiber Coupling. Nano Letters, 2014, 14, 4102-4106.	4.5	107
7	Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films. Journal of Applied Physics, 2000, 87, 228-235.	1.1	95
8	Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide. Nano Letters, 2018, 18, 3047-3052.	4.5	80
9	Polarization Entangled Photons from Quantum Dots Embedded in Nanowires. Nano Letters, 2014, 14, 7107-7114.	4.5	73
10	Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities. Applied Physics Letters, 2005, 87, 221110.	1.5	61
11	Selective-area vapor-liquid-solid growth of tunable InAsP quantum dots in nanowires. Applied Physics Letters, 2011, 98, .	1.5	58
12	Strain-Tunable Quantum Integrated Photonics. Nano Letters, 2018, 18, 7969-7976.	4.5	57
13	Nanowire coupling to photonic crystal nanocavities for single photon sources. Optics Express, 2007, 15, 1267.	1.7	56
14	Bright nanoscale source of deterministic entangled photonÂpairs violating Bell's inequality. Scientific Reports, 2017, 7, 1700.	1.6	56
15	Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Physical Review B, 2010, 82, .	1.1	55
16	Substrate and morphology effects on photoemission from core-levels in gold clusters. Surface Science, 2001, 472, 33-40.	0.8	54
17	Efficient Single-Photon Detection with 7.7 ps Time Resolution for Photon-Correlation Measurements. ACS Photonics, 2020, 7, 1780-1787.	3.2	52
18	Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films. Applied Physics Letters, 2000, 77, 4283-4285.	1.5	46

#	Article	IF	Citations
19	Controlling the exciton energy of a nanowire quantum dot by strain fields. Applied Physics Letters, 2016, 108, .	1.5	42
20	Droplet Dynamics in Controlled InAs Nanowire Interconnections. Nano Letters, 2013, 13, 2676-2681.	4.5	40
21	Onâ€Chip Integration of Single Photon Sources via Evanescent Coupling of Tapered Nanowires to SiN Waveguides. Advanced Quantum Technologies, 2020, 3, 1900021.	1.8	38
22	All-optical conditional logic with a nonlinear photonic crystal nanocavity. Applied Physics Letters, 2009, 95, .	1.5	35
23	A solid state source of photon triplets based on quantum dot molecules. Nature Communications, 2017, 8, 15716.	5.8	35
24	Nanowire-based sources of non-classical light. Nanotechnology, 2019, 30, 232001.	1.3	32
25	Multiplexed Single-Photon Source Based on Multiple Quantum Dots Embedded within a Single Nanowire. Nano Letters, 2020, 20, 3688-3693.	4.5	25
26	Postfabrication fine-tuning of photonic crystal microcavities in InAsâ^InP quantum dot membranes. Applied Physics Letters, 2005, 87, 151107.	1.5	23
27	Controlled integration of selected detectors and emitters in photonic integrated circuits. Optics Express, 2019, 27, 3710.	1.7	23
28	Microphotonic Elements for Integration on the Silicon-on-Insulator Waveguide Platform. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1402-1415.	1,9	21
29	InAs/InP quantum-dot pillar microcavities using SiO2/Ta2O5 Bragg reflectors with emission around 1.55â€,μm. Applied Physics Letters, 2004, 84, 3235-3237.	1.5	20
30	Far field emission profile of pure wurtzite InP nanowires. Applied Physics Letters, 2014, 105, 191113.	1.5	15
31	Unity yield of deterministically positioned quantum dot single photon sources. Scientific Reports, 2022, 12, 6376.	1.6	15
32	<i>In-situ</i> tuning of individual position-controlled nanowire quantum dots via laser-induced intermixing. Applied Physics Letters, 2018, 113, .	1.5	14
33	Theory and experiments of coherent photon coupling in semiconductor nanowire waveguides with quantum dot molecules. Physical Review B, 2019, 99, .	1.1	14
34	Optical fibre-based single photon source using InAsP quantum dot nanowires and gradient-index lens collection. Scientific Reports, 2021, 11, 22878.	1.6	12
35	Systematic study of the emission spectra of nanowire quantum dots. Applied Physics Letters, 2021, $118, \ldots$	1.5	9
36	Multiplexed Single Photons from Deterministically Positioned Nanowire Quantum Dots. Physical Review Applied, 2020, 14, .	1.5	7

#	Article	IF	CITATIONS
37	Tailoring the Geometry of Bottom-Up Nanowires: Application to High Efficiency Single Photon Sources. Nanomaterials, 2021, 11, 1201.	1.9	7
38	Precision tuning of InAs quantum dot emission wavelength by iterative laser annealing. Optics and Laser Technology, 2018, 103, 382-386.	2.2	6
39	Pump power control of photon statistics in a nanowire quantum dot. Physical Review B, 2020, 102, .	1.1	6
40	Demonstration and modeling of time-bin entangled photons from a quantum dot in a nanowire. AIP Advances, 2022, 12, 055115.	0.6	5
41	Numerical Engineering of Robust Adiabatic Operations. Physical Review Applied, 2021, 15, .	1.5	4
42	Magnetic tuning of tunnel coupling between InAsP double quantum dots in InP nanowires. Scientific Reports, 2022, 12, 5100.	1.6	2
43	Single-photon source based on a quantum dot emitting at cesium wavelength. , 2022, , .		2
44	Hybrid Quantum Photonic Integrated Circuits. , 2021, , .		1