
Patricia Kara De Maeijer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5764369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of superabsorbent polymers (SAP) on the freeze–thaw resistance of concrete: results of a RILEM interlaboratory study. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	117
2	Electric arc furnace granulated slag for sustainable concrete. Construction and Building Materials, 2016, 123, 115-119.	7.2	78
3	Effect of ultra-fine fly ash on concrete performance and durability. Construction and Building Materials, 2020, 263, 120493.	7.2	62
4	Fiber Optics Sensors in Asphalt Pavement: State-of-the-Art Review. Infrastructures, 2019, 4, 36.	2.8	34
5	Concrete manufactured with crushed asphalt as partial replacement of natural aggregates. Materiales De Construccion, 2016, 66, 101.	0.7	33
6	Recommendation of RILEM TC 264 RAP on the evaluation of asphalt recycling agents for hot mix asphalt. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	31
7	Performance and Compatibility of Phosphonate-Based Superplasticizers for Concrete. Buildings, 2017, 7, 62.	3.1	22
8	Cradle-to-Gate Life Cycle and Economic Assessment of Sustainable Concrete Mixes—Alkali-Activated Concrete (AAC) and Bacterial Concrete (BC). Infrastructures, 2021, 6, 104.	2.8	22
9	Crumb Rubber in Concrete—The Barriers for Application in the Construction Industry. Infrastructures, 2021, 6, 116.	2.8	21
10	Fiber Bragg Grating Sensors in Three Asphalt Pavement Layers. Infrastructures, 2018, 3, 16.	2.8	18
11	VOC Emission Analysis of Bitumen Using Proton-Transfer Reaction Time-Of-Flight Mass Spectrometry. Materials, 2020, 13, 3659.	2.9	18
12	Improving Freeze–Thaw Resistance of Concrete Road Infrastructure by Means of Superabsorbent Polymers. Infrastructures, 2018, 3, 4.	2.8	14
13	Fundamental Approaches to Predict Moisture Damage in Asphalt Mixtures: State-of-the-Art Review. Infrastructures, 2020, 5, 20.	2.8	14
14	The Rheological and Mechanical Performances of Concrete Manufactured with Blended Admixtures Based on Phosphonates. Key Engineering Materials, 0, 674, 159-164.	0.4	12
15	Evaluation of properties of concrete incorporating ash as mineral admixtures. Construction Science, 2012, 13, .	0.1	9
16	Recommendations and strategies for using reclaimed asphalt pavement in the Flemish Region based on a first life cycle assessment research. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012088.	0.6	8
17	Peat Fibers and Finely Ground Peat Powder for Application in Asphalt. Infrastructures, 2019, 4, 3.	2.8	6
18	Effect of Aging on the Rheological Properties of Blends of Virgin and Rejuvenated RA Binders. RILEM Bookseries, 2022, , 3-10.	0.4	6

#	Article	IF	CITATIONS
19	Application of Peat, Wood Processing and Agricultural Industry By-products in Producing the Insulating Building Materials. Journal of Sustainable Architecture and Civil Engineering, 2013, 1, .	0.5	6
20	Experimental Determination, Correlation with Microanalyses, and Development of Simplified Prediction Models for Drying Shrinkage of Alkali-Activated Concrete. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	6
21	The usage of fluorescent waste glass powder in concrete. Construction Science, 2012, 13, .	0.1	5
22	Performance of waste glass powder (WGP) supplementary cementitious material (SCM) – Drying shrinkage and early age shrinkage cracking. ÉpÃŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2014, 66, 18-22.	0.2	5
23	Demonstrating Innovative Technologies for the Flemish Asphalt Sector in the CyPaTs Project. IOP Conference Series: Materials Science and Engineering, 2019, 471, 022031.	0.6	5
24	Performance of waste glass powder (WGP) supplementary cementitious material (SCM) – Workability and compressive strength. ÉpÃŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2013, 65, 90-94.	0.2	4
25	High Efficiency Ecological Concrete. Key Engineering Materials, 2014, 604, 157-160.	0.4	3
26	Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures. IOP Conference Series: Materials Science and Engineering, 2016, 123, 012057.	0.6	3
27	Experimental Investigation on Water Loss and Stiffness of CBTM Using Different RA Sources. RILEM Bookseries, 2022, , 11-17.	0.4	3
28	The use of a non-nuclear density gauge for monitoring the compaction process of asphalt pavement. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012014.	0.6	2
29	Peat as an Example of a Natural Fiber in Bitumen. RILEM Bookseries, 2019, , 300-305.	0.4	2
30	Performance of lamp glass waste powder (LGWP) as supplementary cementitious material (SCM) – viscosity and electrical conductivity. ÉpĂŧÅ'anyag: Journal of Silicate Based and Composite Materials, 2015, 67, 12-18.	0.2	2
31	Recycling of Glass Wastes in Latvia – Its Application as Cement Substitute in Self-Compacting Concrete. Journal of Sustainable Architecture and Civil Engineering, 2014, 6, .	0.5	2
32	The Effect of Sodium Silicate on the Behaviour of Shotcretes for Tunnel Lining. Journal of Scientific Research and Reports, 2017, 14, 1-8.	0.2	2
33	Investigation of Thermal Properties of Cement Paste with Fluorescent Lamp Glass Waste, Glass Cullet and Coal/Wood Ashes. Journal of Sustainable Architecture and Civil Engineering, 2013, 2, .	0.5	2
34	Improving Quality of High Performance Concrete by Cavitation Treatment of the Raw Materials. Procedia Engineering, 2013, 57, 597-604.	1.2	1
35	Recycled Aggregate Concrete with Fluorescent Waste Glass and Coal/Wood Ash Concrete Wastes. Journal of Sustainable Architecture and Civil Engineering, 2012, 1, .	0.5	0
36	Comparative Study on (Non-)Destructive Techniques for On-Site Strength and Durability Assessment of Limestone Based Concrete Slabs. , 0, , .		0

#	ARTICLE	IF	CITATIONS
37	High-Temperature, Bond, and Environmental Impact Assessment of Alkali-Activated Concrete (AAC). , 0, ,		0