Justin J-L Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5764275/publications.pdf

Version: 2024-02-01

48 papers 3,538 citations

28 h-index 206112 48 g-index

56 all docs 56
docs citations

56 times ranked 6264 citing authors

#	Article	IF	CITATIONS
1	The m6A-epitranscriptome in brain plasticity, learning and memory. Seminars in Cell and Developmental Biology, 2022, 125, 110-121.	5.0	15
2	Dynamic intron retention modulates gene expression in the monocytic differentiation pathway. Immunology, 2022, 165, 274-286.	4.4	7
3	Tumor suppressor CEBPA interacts with and inhibits DNMT3A activity. Science Advances, 2022, 8, eabl5220.	10.3	11
4	The multifaceted effects of YTHDC1-mediated nuclear m6A recognition. Trends in Genetics, 2022, 38, 325-332.	6.7	46
5	Intron retention: importance, challenges, and opportunities. Trends in Genetics, 2022, 38, 789-792.	6.7	16
6	OXSR1 inhibits inflammasome activation by limiting potassium efflux during mycobacterial infection. Life Science Alliance, 2022, 5, e202201476.	2.8	2
7	<i>Ctcf</i> haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biology, 2021, 18, 93-103.	3.1	12
8	CCM2L (Cerebral Cavernous Malformation 2 Like) Deletion Aggravates Cerebral Cavernous Malformation Through Map3k3-KLF Signaling Pathway. Stroke, 2021, 52, 1428-1436.	2.0	3
9	Pdcd10-Stk24/25 complex controls kidney water reabsorption by regulating Aqp2 membrane targeting. JCI Insight, 2021, 6, .	5.0	13
10	The Expanding Role of Alternative Splicing in Vascular Smooth Muscle Cell Plasticity. International Journal of Molecular Sciences, 2021, 22, 10213.	4.1	7
11	Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nature Communications, 2020, 11, 4956.	12.8	44
12	Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients. Cancers, 2020, 12, 3738.	3.7	10
13	Macrophage development and activation involve coordinated intron retention in key inflammatory regulators. Nucleic Acids Research, 2020, 48, 6513-6529.	14.5	45
14	Murine and related chapparvoviruses are nephro-tropic and produce novel accessory proteins in infected kidneys. PLoS Pathogens, 2020, 16, e1008262.	4.7	23
15	The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Research, 2019, 47, 11497-11513.	14.5	90
16	DNA methylation/hydroxymethylation regulate gene expression and alternative splicing during terminal granulopoiesis. Epigenomics, 2019, 11, 95-109.	2.1	18
17	We skip to work: alternative splicing in normal and malignant myelopoiesis. Leukemia, 2018, 32, 1081-1093.	7.2	33
18	Challenges in defining the role of intron retention in normal biology and disease. Seminars in Cell and Developmental Biology, 2018, 75, 40-49.	5.0	51

#	Article	IF	Citations
19	Aberrant expression of enzymes regulating m ⁶ A mRNA methylation: implication in cancer. Cancer Biology and Medicine, 2018, 15, 323.	3.0	86
20	An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis. Cell, 2018, 175, 530-543.e24.	28.9	89
21	Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten. Epigenetics and Chromatin, 2018, $11, 24$.	3.9	38
22	Identifying microRNA determinants of human myelopoiesis. Scientific Reports, 2018, 8, 7264.	3.3	14
23	Differential chemokine receptor expression and usage by preâ€ <scp>cDC</scp> 1 and preâ€ <scp>cDC</scp> 2. Immunology and Cell Biology, 2018, 96, 1131-1139.	2.3	24
24	Nuclear microRNAs in normal hemopoiesis and cancer. Journal of Hematology and Oncology, 2017, 10, 8.	17.0	33
25	Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 39.	17.0	215
26	Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nature Communications, 2017, 8, 15134.	12.8	92
27	IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biology, 2017, 18, 51.	8.8	203
28	The Activity-Induced Long Non-Coding RNA Meg3 Modulates AMPA Receptor Surface Expression in Primary Cortical Neurons. Frontiers in Cellular Neuroscience, 2017, 11, 124.	3.7	65
29	Intron retention enhances gene regulatory complexity in vertebrates. Genome Biology, 2017, 18, 216.	8.8	79
30	A dynamic intron retention program in the mammalian megakaryocyte and erythrocyte lineages. Blood, 2016, 127, e24-e34.	1.4	94
31	Intron retention in mRNA: No longer nonsense. BioEssays, 2016, 38, 41-49.	2.5	163
32	RBM3 regulates temperature sensitive miR-142–5p and miR-143 (thermomiRs), which target immune genes and control fever. Nucleic Acids Research, 2016, 44, 2888-2897.	14.5	50
33	Targeting <scp>ASCT2</scp> â€mediated glutamine uptake blocks prostate cancer growth and tumour development. Journal of Pathology, 2015, 236, 278-289.	4.5	275
34	Epigenetic modifications of splicing factor genes in myelodysplastic syndromes and acute myeloid leukemia. Cancer Science, 2014, 105, 1457-1463.	3.9	21
35	Small RNA changes en route to distinct cellular states of induced pluripotency. Nature Communications, 2014, 5, 5522.	12.8	54
36	Identification of nuclear-enriched miRNAs during mouse granulopoiesis. Journal of Hematology and Oncology, 2014, 7, 42.	17.0	29

#	Article	lF	CITATIONS
37	Changes in CpG methylation marks differentiation of human myeloid progenitors to neutrophils. Stem Cell Investigation, 2014, 1, 10.	3.0	0
38	Orchestrated Intron Retention Regulates Normal Granulocyte Differentiation. Cell, 2013, 154, 583-595.	28.9	408
39	Micro <scp>RNA</scp> s in myeloid malignancies. British Journal of Haematology, 2013, 162, 162-176.	2.5	39
40	Current trends of HIV recombination worldwide. Gastroenterology Insights, 2013, 5, 4.	1.2	55
41	Intron Retention Coupled with Nonsense-Mediated Decay Determines Protein Expression and Nuclear Morphology in Granulopoiesis. Blood, 2012, 120, 112-112.	1.4	9
42	Dominantly Inherited Constitutional Epigenetic Silencing of MLH1 in a Cancer-Affected Family Is Linked to a Single Nucleotide Variant within the 5′UTR. Cancer Cell, 2011, 20, 200-213.	16.8	158
43	Methylation of the 3p22 region encompassing MLH1 is representative of the CpG island methylator phenotype in colorectal cancer. Modern Pathology, 2011, 24, 396-411.	5.5	39
44	Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nature Structural and Molecular Biology, 2010, 17, 1030-1034.	8.2	146
45	MGMT methylation is associated primarily with the germline C>T SNP (rs16906252) in colorectal cancer and normal colonic mucosa. Modern Pathology, 2009, 22, 1588-1599.	5.5	64
46	Colorectal cancer: a model for epigenetic tumorigenesis. Gut, 2007, 56, 140-148.	12.1	146
47	Inheritance of a Cancer-Associated <i>MLH1 </i> Germ-Line Epimutation. New England Journal of Medicine, 2007, 356, 697-705.	27.0	380
48	Germline epimutations of APC are not associated with inherited colorectal polyposis. Gut, 2006, 55, 586-587.	12.1	10