
MÃ;rcia C Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5764250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How long does the mRNA remains stable in untreated whole bovine blood?. Molecular Biology Reports, 2022, 49, 789-795.	2.3	Ο
2	Zeolite supplementation effects on lamb growth and gastrointestinal nematode infection, and economic analysis. Revista Ciencia Agronomica, 2022, 53, .	0.3	0
3	New sensitive methods for fraud detection in buffalo dairy products. International Dairy Journal, 2021, 117, 105013.	3.0	6
4	Ovine β-globin gene: A new qPCR for rapid haplotype identification and association with susceptibility to Haemonchus contortus infection. Veterinary Parasitology, 2021, 294, 109434.	1.8	6
5	Semi-quantitative evaluation of Babesia bovis and B. bigemina infection levels estimated by HRM analysis. Ticks and Tick-borne Diseases, 2021, 12, 101753.	2.7	4
6	Zinc fractionation in cow, goat, sheep and soybean milk samples using gel-electrophoresis and determination by electrothermal atomic absorption spectrometry (ETAAS). Ecletica Quimica, 2021, 46, 12-20.	0.5	1
7	Comparison of ovine β-globin haplotype sequences and a new multiplex PCR for identification. Veterinary Parasitology, 2021, 300, 109592.	1.8	1
8	Novel LNA probe-based assay for the A1 and A2 identification of β-casein gene in milk samples. Food Chemistry Molecular Sciences, 2021, 3, 100055.	2.1	2
9	Calcium, Fe, Cu, Zn, and Mg Fractionation in In Natura and Aged Beef Samples by Bioanalytical Methods. Food Analytical Methods, 2020, 13, 186-194.	2.6	1
10	Use of molecular markers can help to understand the genetic diversity of Babesia bovis. Infection, Genetics and Evolution, 2020, 79, 104161.	2.3	6
11	New high-sensitive rhAmp method for A1 allele detection in A2 milk samples. Food Chemistry, 2020, 313, 126167.	8.2	31
12	A polymorphic CD4 epitope related to increased susceptibility to Babesia bovis in Canchim calves. Veterinary Immunology and Immunopathology, 2020, 230, 110132.	1.2	5
13	Correlations and repeatability between Babesia spp. infection levels using two dairy cattle breeding systems. Experimental and Applied Acarology, 2020, 81, 599-607.	1.6	4
14	Genomic Study of Babesia bovis Infection Level and Its Association With Tick Count in Hereford and Braford Cattle. Frontiers in Immunology, 2020, 11, 1905.	4.8	6
15	Uncovering Sub-Structure and Genomic Profiles in Across-Countries Subpopulations of Angus Cattle. Scientific Reports, 2020, 10, 8770.	3.3	6
16	Inferring phenotypic causal networks for tick infestation, Babesia bovis infection, and weight gain in Hereford and Braford cattle using structural equation models. Livestock Science, 2020, 238, 104032.	1.6	3
17	Efficient Transovarial Transmission of Babesia Spp. in Rhipicephalus microplus Ticks Fed on Water Buffalo (Bubalus bubalis). Pathogens, 2020, 9, 280.	2.8	6
18	INSECT RICHNESS IN DUNG PATCHES OF CATTLE RAISED IN TWO LIVESTOCK SYSTEMS. Revista De Agricultura Neotropical, 2020, 7, 9-17.	0.5	5

MÃircia C Oliveira

#	Article	IF	CITATIONS
19	Resistance to the tick Rhipicephalus microplus and Babesia bovis infection levels in beef heifers raised in an endemic area of Sao Paulo state, Brazil. Animal Production Science, 2019, 59, 938.	1.3	6
20	Pyrethroid and organophosphate pesticide resistance in field populations of horn fly in Brazil. Medical and Veterinary Entomology, 2019, 33, 121-130.	1.5	14
21	Elimination of erroneous results related to bovine mononuclear cell immunophenotyping by antibodies binding to Fc receptors. Veterinary Immunology and Immunopathology, 2019, 213, 109889.	1.2	3
22	High co-infection rates of Babesia bovis, Babesia bigemina, and Anaplasma marginale in water buffalo in Western Cuba. Parasitology Research, 2019, 118, 955-967.	1.6	20
23	Development of a loop-mediated isothermal amplification (LAMP) assay for the detection of Anaplasma marginale. Experimental and Applied Acarology, 2019, 77, 65-72.	1.6	10
24	Differential IL10 mRNA Profiles Associated to <i>Babesia bovis</i> and <i>B. bigemina</i> Infection Levels in Persistently Infected Animals. Open Journal of Veterinary Medicine, 2019, 09, 161-169.	0.4	0
25	COMPARATIVE STUDY OF CATTLE TICK RESISTANCE USING GENERALIZED LINEAR MIXED MODELS. Revista Brasileira De Biometria, 2019, 37, 41-55.	0.1	Ο
26	Estimates of repeatability and correlations of hemoparasites infection levels for cattle reared in endemic areas for Rhipicephalus microplus. Veterinary Parasitology, 2018, 250, 78-84.	1.8	16
27	qPCR estimates of Babesia bovis and Babesia bigemina infection levels in beef cattle and Rhipicephalus microplus larvae. Experimental and Applied Acarology, 2018, 75, 235-240.	1.6	12
28	Comparative evaluation of DNA extraction kit, matrix sample and qPCR assays for bovine babesiosis monitoring. Molecular Biology Reports, 2018, 45, 2671-2680.	2.3	10
29	Molecular evidence of the reservoir competence of water buffalo (Bubalus bubalis) for Anaplasma marginale in Cuba. Veterinary Parasitology: Regional Studies and Reports, 2018, 13, 180-187.	0.5	10
30	Lack of impact of dietary inclusion of dried Artemisia annua leaves for cattle on infestation by Rhipicephalus (Boophilus) microplus ticks. Ticks and Tick-borne Diseases, 2018, 9, 1115-1119.	2.7	5
31	Resistance of sheep from different genetic groups to gastrointestinal nematodes in the state of São Paulo, Brazil. Small Ruminant Research, 2018, 166, 7-11.	1.2	7
32	Gastrointestinal nematode infection in beef cattle raised in silvopastoral and conventional systems in São Paulo state, Brazil. Agroforestry Systems, 2017, 91, 495-507.	2.0	9
33	Molecular quantitative assay for esterase-mediated organophosphate resistance in Rhipicephalus microplus. Ticks and Tick-borne Diseases, 2017, 8, 725-732.	2.7	9
34	Differential Haematobia irritans infestation levels in beef cattle raised in silvopastoral and conventional pasture systems. Veterinary Parasitology, 2017, 246, 96-99.	1.8	8
35	Neither quantification by qPCR nor quantitative Elisa can be used to discriminate Angus cattle for resistance/susceptibility to Babesia bovis. Ticks and Tick-borne Diseases, 2017, 8, 335-340.	2.7	9
36	205 Estimates of genetic parameter for tick count and infection level of Babesia Bovis traits in Braford and Hereford cattle. Journal of Animal Science, 2017, 95, 101-102.	0.5	0

MÃircia C Oliveira

#	Article	IF	CITATIONS
37	Efficacy of 11 Brazilian essential oils on lethality of the cattle tick Rhipicephalus (Boophilus) microplus. Ticks and Tick-borne Diseases, 2016, 7, 427-432.	2.7	44
38	Babesia bovis and Babesia bigemina infection levels estimated by qPCR in Angus cattle from an endemic area of São Paulo state, Brazil. Ticks and Tick-borne Diseases, 2016, 7, 657-662.	2.7	24
39	Proteolytic activity of excretory/secretory products of Cochliomyia hominivorax larvae (Diptera:) Tj ETQq1 1 0.784	4314 rgBT 0.5	/Qverlock 1
40	Detection of <i>Babesia bovis</i> and <i>Babesia bigemina</i> in Water Buffaloes (<i>Bubalus bubalis</i>) in Endemic Areas of São Paulo State, Brazil. Open Journal of Veterinary Medicine, 2016, 06, 75-84.	0.4	6
41	Genetic study of skin thickness and its association with postweaning growth in Nellore cattle: estimation of the genetic parameters. Genetics and Molecular Research, 2016, 15, .	0.2	4
42	Quantitative study of Babesia bovis infection in beef cattle from São Paulo state, Brazil. Ticks and Tick-borne Diseases, 2014, 5, 234-238.	2.7	25
43	Anthelmintic activity of Artemisia annua L. extracts in vitro and the effect of an aqueous extract and artemisinin in sheep naturally infected with gastrointestinal nematodes. Parasitology Research, 2014, 113, 2345-2353.	1.6	29
44	In vitro and in vivo acaricide action of juvenoid analogs produced from the chemical modification of Cymbopogon spp. and Corymbia citriodora essential oil on the cattle tick Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 2014, 205, 277-284.	1.8	28
45	Babesia bovis infection in cattle in the southwestern Brazilian Amazon. Ticks and Tick-borne Diseases, 2013, 4, 78-82.	2.7	5
46	Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil. Veterinary Parasitology, 2013, 197, 168-175.	1.8	23
47	In vitro and in vivo evaluation of the activity of pineapple (Ananas comosus) on Haemonchus contortus in Santa Inês sheep. Veterinary Parasitology, 2013, 197, 263-270.	1.8	28
48	In vitro activity of pineapple extracts (Ananas comosus, Bromeliaceae) on Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Experimental Parasitology, 2013, 134, 400-404.	1.2	18
49	Haemonchus contortus: A multiple-resistant Brazilian isolate and the costs for its characterization and maintenance for research use. Parasitology International, 2013, 62, 1-6.	1.3	46
50	In vitro Anthelmintic effect of Melia azedarach L. and Trichilia claussenii C. against sheep gastrointestinal nematodes. Experimental Parasitology, 2012, 130, 98-102.	1.2	32
51	Resistance of cattle of various genetic groups to the tick Rhipicephalus microplus and the relationship with coat traits. Veterinary Parasitology, 2012, 186, 425-430.	1.8	52
52	In vitro efficacy of plant extracts and synthesized substances on Rhipicephalus (Boophilus) Microplus (Acari: Ixodidae). Parasitology Research, 2012, 110, 295-303.	1.6	80
53	In vitro activity of Artemisia annua L (Asteraceae) extracts against Rhipicephalus (Boophilus) microplus. Brazilian Journal of Veterinary Parasitology, 2011, 20, 31-35.	0.7	18
54	Evaluation of the Efficacy of Acaricides Used to Control the Cattle Tick, <i>Rhipicephalus microplus</i> , in Dairy Herds Raised in the Brazilian Southwestern Amazon. Veterinary Medicine International, 2011, 2011, 1-6.	1.5	29

MÃircia C Oliveira

#	Article	lF	CITATIONS
55	In vitro acaricidal activity of neem (Azadirachta indica) seed extracts with known azadirachtin concentrations against Rhipicephalus microplus. Veterinary Parasitology, 2011, 181, 309-315.	1.8	31
56	mRNA profile of Nellore calves after primary infection with Haemonchus placei. Veterinary Parasitology, 2011, 176, 195-200.	1.8	11
57	Efficacy evaluation of a commercial neem cake for control of Haematobia irritans on Nelore cattle. Brazilian Journal of Veterinary Parasitology, 2010, 19, 217-221.	0.7	5
58	Heat tolerance of Nelore, Senepol x Nelore and Angus x Nelore heifers in the southeast region of Brazil. South African Journal of Animal Sciences, 2010, 39, .	0.5	1
59	Infestação natural de fêmeas bovinas de corte por ectoparasitas na Região Sudeste do Brasil. Revista Brasileira De Zootecnia, 2010, 39, 1477-1482.	0.8	20
60	Anaplasma marginale infection in cattle from south-western Amazonia. Pesquisa Veterinaria Brasileira, 2010, 30, 249-254.	0.5	9
61	Gastrointestinal nematode infection in beef cattle of different genetic groups in Brazil. Veterinary Parasitology, 2009, 166, 249-254.	1.8	27
62	Detection of Babesia bigemina in cattle of different genetic groups and in Rhipicephalus (Boophilus) microplus tick. Veterinary Parasitology, 2008, 155, 281-286.	1.8	25
63	Artificial infestation of Boophilus microplus in beef cattle heifers of four genetic groups. Genetics and Molecular Biology, 2007, 30, 1150-1155.	1.3	31
64	Babesia spp. infection in Boophilus microplus engorged females and eggs in São Paulo State, Brazil. Veterinary Parasitology, 2005, 130, 61-67.	1.8	41
65	PCR-based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. International Journal for Parasitology, 2005, 35, 105-111.	3.1	93
66	Peso de abate de machos não-castrados para produção do bovino jovem. 1. Desempenho em confinamento e custos de produção. Revista Brasileira De Zootecnia, 2004, 33, 635-645.	0.8	6