List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5764119/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and Hydroisomerization Performance of Mgâ€Promoted, Pt/ZSMâ€⊋3â€Based Catalysts. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	1
2	Silicon doping effect on the properties of the hydrotreating catalysts of FCC feedstock pretreatment. Applied Catalysis B: Environmental, 2021, 280, 119415.	20.2	22
3	Comparison of alumina supports and catalytic activity of CoMoP/γ-Al2O3 hydrotreating catalysts obtained using flash calcination of gibbsite and precipitation method. Catalysis Today, 2020, 353, 88-98.	4.4	12
4	Influence of alumina precursor on silicon capacity of NiMo/γ-Al2O3 guard bed catalysts for gas oil hydrotreating. Catalysis Today, 2020, 353, 53-62.	4.4	12
5	Influence of input conditions on the flow distribution in trickle bed reactors. Chemical Engineering Journal, 2020, 382, 122806.	12.7	5
6	Prospects for the Development of Catalysts for the Oxidation Processes of Advanced Propylene Processing. Catalysis in Industry, 2020, 12, 176-200.	0.7	2
7	Conversion of Oil Shale Hydroconversion Products in the Presence of Supported Nickel–Molybdenum Sulfide Catalysts. Petroleum Chemistry, 2020, 60, 744-750.	1.4	1
8	Effect of the ZSM-23 Synthesis Method on the Properties of Pt/ZSM-23/Al2O3 Catalysts in n-Decane Conversion. Petroleum Chemistry, 2020, 60, 212-218.	1.4	7
9	Influence of Topology and Chemical Composition of MTT and MFI Zeolites on Catalytic Properties in the Isomerization Reaction of Ethylene Oxide to Acetaldehyde. Petroleum Chemistry, 2019, 59, 726-732.	1.4	4
10	Behavior of a Two-Phase Gas–Liquid Flow at the Inlet into a Catalytic Reactor. Catalysis in Industry, 2019, 11, 243-250.	0.7	0
11	Impact of heat and mass transfer in porous catalytic monolith: CFD modeling of exothermic reaction. Chemical Engineering Science, 2019, 205, 1-13.	3.8	5
12	Optimizing the Properties of an Alumina Support of Hydrotreating Catalysts by Introducing Boron and Sulfur at the Stage of Obtaining Pseudoboehmite by Hydrothermal Treatment of the Product Produced by Flash Calcination of Gibbsite. Catalysis in Industry, 2019, 11, 301-312.	0.7	11
13	The influence of B and P in the impregnating solution on the properties of NiMo/γ-δ-Al2O3 catalysts for VGO hydrotreating. Catalysis Today, 2019, 329, 2-12.	4.4	21
14	Influence of the phosphorus addition ways on properties of CoMo-catalysts of hydrotreating. Catalysis Today, 2019, 329, 13-23.	4.4	25
15	Influence of USY zeolite recrystallization on physicochemical properties and catalytic performance of NiMo/USY-Al2O3 hydrocracking catalysts. Catalysis Today, 2019, 329, 108-115.	4.4	43
16	The Effect of Transition Alumina (γâ€, Î-â€, χâ€Al ₂ O ₃) on the Activity and Stability of Chromia/Alumina Catalysts. Part I: Model Catalysts and Aging Conditions. Energy Technology, 2019, 7, 1800735.	3.8	4
17	The Effect of Transition Alumina (γâ€, ηâ€, χâ€Al 2 O 3) on the Activity and Stability of Chromia/Alumina Catalysts. Part II: Industrial‣ike Catalysts and Real Plant Aging Conditions. Energy Technology, 2019, 7, 1800736.	3.8	2
18	Guard bed catalysts for silicon removal during hydrotreating of middle distillates. Catalysis Today, 2019, 329, 53-62.	4.4	24

#	Article	IF	CITATIONS
19	Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties. Fuel, 2019, 237, 178-190.	6.4	56
20	Hydrocracking of Vacuum Gasoil on NiMo/AAS-Al2O3 Catalysts Prepared from Citric Acid: Effect of the Catalyst Heat Treatment Temperature. Catalysis in Industry, 2018, 10, 29-40.	0.7	3
21	Reactivation of CoMo/Al2O3 Hydrotreating Catalysts by Citric Acid. Catalysis Letters, 2018, 148, 1525-1534.	2.6	20
22	CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity. Catalysis Today, 2018, 307, 73-83.	4.4	36
23	CoMoB/Al 2 O 3 catalysts for hydrotreating of diesel fuel. The effect of the way of the boron addition to a support or an impregnating solution. Catalysis Today, 2018, 305, 192-202.	4.4	24
24	Effect of thermal treatment on morphology and catalytic performance of NiW/Al2O3 catalysts prepared using citric acid as chelating agent. Catalysis Today, 2018, 305, 162-170.	4.4	19
25	Amorphous silica-alumina – perspective supports for selective hydrotreating of FCC gasoline: Influence of Mg. Applied Catalysis B: Environmental, 2018, 223, 22-35.	20.2	23
26	Hydrocracking of vacuum gas oil over NiMo/Y-Al2O3: Effect of mesoporosity introduced by zeolite Y recrystallization. Catalysis Today, 2018, 305, 117-125.	4.4	50
27	Effect of Method of Boron Introduction into NiMo/Al2O3 Protective-Layer Catalysts on the Removal of Silicon from Diesel Fractions. Russian Journal of Applied Chemistry, 2018, 91, 2022-2029.	0.5	4
28	A Mathematical Model of the Working Processes of a Hybrid Power Displacement Piston Machine with Profiled Groove Seal. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I) Tj ETQq0 0 0 r	gB ō.¦O ver	loct 10 Tf 50
29	Isomerization of Ethylene Oxide into Acetaldehyde on Zeolite with MTT (ZSM-23 Type) Structure. Russian Journal of Applied Chemistry, 2018, 91, 2030-2039.	0.5	3
30	Catalytic Redox Transformations in Rock Matrices. Catalysis in Industry, 2018, 10, 91-96.	0.7	3
31	Effect of the Density of a Microspherical Catalyst on the Operating Regimes of a Fluidized Bed. Catalysis in Industry, 2018, 10, 126-134.	0.7	0
32	Screening of Granulated Catalysts for the Dehydrogenation of Light C4 Paraffins. Catalysis in Industry, 2018, 10, 110-114.	0.7	0
33	Novel eco-friendly method for preparation of mesoporous alumina from the product of rapid thermal treatment of gibbsite. Superlattices and Microstructures, 2018, 120, 148-160.	3.1	30
34	Prospects for Conversion of Refinery Gas to High-Octane Oxygen-Containing Components of Motor Fuels. Catalysis in Industry, 2018, 10, 115-117.	0.7	2
35	Influence of Temperature on the Hydrogenation of Oil Shale from the Kashpir Deposit. Solid Fuel Chemistry, 2018, 52, 26-29.	0.7	1
36	Hydrocracking of Vacuum Gasoil on NiMoW/AAS-Al2O3 Trimetallic Catalysts: Effect of the W : Mo Ratio. Catalysis in Industry, 2018, 10, 20-28.	0.7	5

#	Article	IF	CITATIONS
37	Hydrogenation of Bituminous Sand. Solid Fuel Chemistry, 2018, 52, 110-115.	0.7	0
38	Catalyst for selective hydrotreating of catalytic cracking gasoline without preliminary fractionation. Catalysis in Industry, 2017, 9, 230-238.	0.7	4
39	Hydroprocessing of straight run diesel mixed with light cycle oil from fluid catalytic cracking, using sulfide NiMo catalyst on zeolite-containing supports. Catalysis in Industry, 2017, 9, 212-220.	0.7	5
40	On the performance stability of the MnOx/Al2O3 catalyst for VOC incineration under forced adsorption-catalytic cycling conditions. Journal of Environmental Chemical Engineering, 2017, 5, 5850-5856.	6.7	24
41	New methods for the preparation of high-octane components from catalytic cracking olefins. Catalysis in Industry, 2017, 9, 204-211.	0.7	5
42	Investigation of behaviors of the circulating fluidized bed. Chemical Engineering Journal, 2017, 329, 66-76.	12.7	8
43	Reactivation of an industrial batch of CoMo/Al2O3 catalyst for the deep hydrotreatment of oil fractions. Catalysis in Industry, 2017, 9, 136-145.	0.7	1
44	Hydrodeoxygenation of methyl-substituted ketones using the composite loading of hydrogenation and dehydration catalysts. Catalysis in Industry, 2017, 9, 299-307.	0.7	2
45	Prospects for the direct catalytic conversion of methane into useful chemical products. Catalysis in Industry, 2017, 9, 283-298.	0.7	12
46	Reactivation of CoMo/Al2O3 hydrotreating catalysts with chelating agents. Russian Journal of Applied Chemistry, 2017, 90, 1425-1432.	0.5	4
47	Effect of catalytic combustion of hydrogen on the dehydration processes in a membrane reactor. III. calculation of the industrial reactor. Combustion, Explosion and Shock Waves, 2017, 53, 626-633.	0.8	0
48	Effect of Composition and Texture Characteristics of NiMo/Al2O3 Guard-Bed Catalysts on Silicon Removal from Diesel Fractions. Petroleum Chemistry, 2017, 57, 1165-1168.	1.4	2
49	Hydroconversion of Oil Shale on Natural Mineral Matrices. Petroleum Chemistry, 2017, 57, 1169-1172.	1.4	4
50	Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions. Journal of Sustainable Development of Energy, Water and Environment Systems, 2017, 5, 408-416.	1.9	5
51	Effect of Residual Moisture of Alumina on Chemism of Its Chlorination with Carbon Tetrachloride. Chemistry for Sustainable Development, 2017, , .	0.1	0
52	Influence of the conditions of hydrogenation treatment of black oil on the yield and properties of the products obtained. Russian Journal of Applied Chemistry, 2016, 89, 254-262.	0.5	5
53	Synthesis of boehmite and hematite by joint hydrolysis of carbamide, aluminum chloride, and iron(III) chloride under hydrothermal conditions. Russian Journal of Applied Chemistry, 2016, 89, 1763-1768. 	0.5	3
54	Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts. Applied Catalysis B: Environmental, 2016, 199, 23-32.	20.2	47

#	Article	IF	CITATIONS
55	Hydroprocessing of hydrocracker bottom on Pd containing bifunctional catalysts. Catalysis Today, 2016, 271, 154-162.	4.4	26
56	Modeling of Heat Transfer in a Porous Monolith Catalyst with Square Channels. Industrial & Engineering Chemistry Research, 2016, 55, 3879-3889.	3.7	11
57	CoNiMo/Al2O3 catalysts for deep hydrotreatment of vacuum gasoil. Catalysis Today, 2016, 271, 56-63.	4.4	39
58	Effect of boron on acid and catalytic properties of Pd-ZSM-23/Al2O3 catalysts in the reaction of diesel fuel hydroisomerization. Russian Journal of Applied Chemistry, 2015, 88, 1827-1838.	0.5	7
59	Hydrocracking of vacuum gas oil in the presence of catalysts NiMo/Al2O3–amorphous aluminosilicates and NiW/Al2O3–amorphous aluminosilicates. Russian Journal of Applied Chemistry, 2015, 88, 1969-1975.	0.5	17
60	Synthesis of NiW/Al2O3 hydrotreating catalysts from ammonium paratungstate using chelating agents. Russian Journal of Applied Chemistry, 2015, 88, 1458-1463.	0.5	5
61	Soot particulates abatement in diesel engine exhaust by catalytic oxidation followed their trapping in filters. Chemical Engineering Journal, 2015, 269, 416-424.	12.7	17
62	Modern approaches to testing granulated catalysts in the hydrotreatment of oil distillates under laboratory conditions. Catalysis in Industry, 2015, 7, 47-53.	0.7	5
63	A new catalyst for the deep hydrotreatment of vacuum gas oil, a catalytic cracking feedstock. Catalysis in Industry, 2015, 7, 38-46.	0.7	13
64	A new method for reactivating the supported deep hydrotreatment CoMo/Al2O3 and NiMo/Al2O3 catalysts after oxidative regeneration. Catalysis in Industry, 2015, 7, 214-220.	0.7	5
65	Simulation of hydrogen and propylene coproduction in catalytic membrane reactor. International Journal of Hydrogen Energy, 2015, 40, 3592-3598.	7.1	29
66	Vacuum gasoil hydrocracking over three-layered packages consisting of supported sulfide NiMo and NiW catalysts. Catalysis in Industry, 2014, 6, 320-328.	0.7	1
67	Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds. Catalysis Today, 2014, 220-222, 168-177.	4.4	41
68	Composition of stacked bed for VGO hydrocracking with maximum diesel yield. Catalysis Today, 2014, 220-222, 124-132.	4.4	30
69	Palladium Nanoparticles Supported on Nitrogenâ€Đoped Carbon Nanofibers: Synthesis, Microstructure, Catalytic Properties, and Selfâ€5ustained Oscillation Phenomena in Carbon Monoxide Oxidation. ChemCatChem, 2014, 6, 2115-2128.	3.7	38
70	Acetylene synthesis by methane pyrolysis on a tungsten wire. Theoretical Foundations of Chemical Engineering, 2014, 48, 397-403.	0.7	23
71	Optimal pretreatment conditions for Co–Mo hydrotreatment catalysts prepared using ethylenediamine as a chelating agent. Catalysis Today, 2014, 220-222, 327-336.	4.4	14
72	Silica-alumina based nickel-molybdenum catalysts for vacuum gas oil hydrocracking aimed at a higher diesel fraction yield. Catalysis in Industry, 2014, 6, 231-238.	0.7	12

#	Article	IF	CITATIONS
73	Supported on alumina Co-Mo hydrotreating catalysts: Dependence of catalytic and strength characteristics on the initial AlOOH particle morphology. Catalysis Today, 2014, 220-222, 66-77.	4.4	39
74	Effect of catalytic combustion of hydrogen on dehydrogenation in a membrane reactor. II. Dehydrogenation of ethane. Verification of the mathematical model. Combustion, Explosion and Shock Waves, 2013, 49, 125-132.	0.8	12
75	Textural characteristics of sulphided hydrotreatment catalysts prepared using Co–Mo complex compounds. Adsorption, 2013, 19, 723-731.	3.0	8
76	Partial hydrogenation of sunflower oil: Influence of the process conditions on the physicochemical properties of the products. Russian Journal of Applied Chemistry, 2012, 85, 1204-1211.	0.5	9
77	Synthesis and characterisation of Co–Mo complexes containing the [Co(C2H8N2)3]2+ cation and [Mo2O7L]4â" anion, where L is an oxalic, tartaric, citric or nitrilotriacetic acid residue. Polyhedron, 2012, 47, 65-72.	2.2	3
78	Highly effective water adsorbents based on aluminum oxide. Kinetics and Catalysis, 2012, 53, 632-639.	1.0	19
79	Platinum nanoparticles supported on nitrogen-containing carbon nanofibers. Catalysis Today, 2012, 186, 42-47.	4.4	33
80	Effect of catalytic combustion of hydrogen on the dehydrogenation processes in a membrane reactor. I. Mathematical model of the process. Combustion, Explosion and Shock Waves, 2011, 47, 499-507.	0.8	14
81	Hydrocracking of vacuum gas oil in the presence of supported nickel-tungsten catalysts. Kinetics and Catalysis, 2011, 52, 446-458.	1.0	14
82	Effect of the nature of the additives of metal cations (Sr, Ba, and La) on the properties of Co-Mo hydrodesulfurization catalysts. Kinetics and Catalysis, 2011, 52, 579-594.	1.0	0
83	Computational fluid dynamics in the development of catalytic reactors. Catalysis in Industry, 2011, 3, 331-349.	0.7	4
84	Mathematical modeling of the propane dehydrogenation process in the catalytic membrane reactor. Chemical Engineering Journal, 2011, 176-177, 151-157.	12.7	55
85	Catalytic dehydration of bioethanol to ethylene: Pilot-scale studies and process simulation. Chemical Engineering Journal, 2011, 176-177, 188-194.	12.7	73
86	Solid dispersion in the slurry reactor with multiple impellers. Chemical Engineering Journal, 2011, 176-177, 75-82.	12.7	16
87	Catalytic methods for associated petroleum gas pretreatment and processing. Russian Journal of General Chemistry, 2011, 81, 2568-2573.	0.8	0
88	Deactivation and oxidative regeneration of modern catalysts for deep hydropurification of diesel fuel: Oxidative regeneration of IK-GO-1 catalyst. Russian Journal of Applied Chemistry, 2011, 84, 95-102.	0.5	3
89	Chemreactor on the Danube. Catalysis in Industry, 2011, 3, 209-214.	0.7	0
90	Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Applied Catalysis B: Environmental, 2011, 103, 397-403.	20.2	63

#	Article	IF	CITATIONS
91	Deactivation and oxidative regeneration of last-generation catalysts for deep hydrofining of diesel fuel: Comparison of properties of fresh and deactivated IK-GO-1 catalysts. Russian Journal of Applied Chemistry, 2010, 83, 2144-2151.	0.5	6
92	Modern catalysts of deep hydrotreatment in the production of low-sulfur diesel fuels at Russian oil refineries according to Euro-3 and Euro-4 standards. Catalysis in Industry, 2010, 2, 101-107.	0.7	2
93	Theoretical and experimental basics of the formation of optimal catalyst layers in tubular reactors. Catalysis in Industry, 2010, 2, 334-342.	0.7	0
94	Co–Mo catalysts for ultra-deep HDS of diesel fuels prepared via synthesis of bimetallic surface compounds. Journal of Molecular Catalysis A, 2010, 322, 80-89.	4.8	79
95	Bimetallic Co–Mo complexes: A starting material for high active hydrodesulfurization catalysts. Catalysis Today, 2010, 150, 196-206.	4.4	33
96	Activity and sulfidation behavior of the CoMo/Al2O3 hydrotreating catalyst: The effect of drying conditions. Catalysis Today, 2010, 149, 19-27.	4.4	68
97	High-active hydrotreating catalysts for heavy petroleum feeds: Intentional synthesis of CoMo sulfide particles with optimal localization on the support surface. Catalysis Today, 2010, 150, 164-170.	4.4	18
98	Bimetallic Co-Mo-complexes with optimal localization on the support surface: A way for highly active hydrodesulfurization catalysts preparation for different petroleum distillates. Studies in Surface Science and Catalysis, 2010, , 509-512.	1.5	5
99	The superior activity of the CoMo hydrotreating catalysts, prepared using citric acid: what's the reason?. Studies in Surface Science and Catalysis, 2010, 175, 109-116.	1.5	23
100	Dehydrogenation of C3–C4 paraffins on Cr2O3/Al2O3 catalysts in fluidized and fixed bed reactors. Chemical Engineering Journal, 2009, 154, 185-188.	12.7	28
101	The use of X-ray absorption spectroscopy for developing new-generation Co-Mo catalysts of hydrotreating of diesel fuel. Doklady Physical Chemistry, 2009, 424, 35-39.	0.9	3
102	Synthesis and physicochemical characterization of palladium-cerium oxide catalysts for the low-temperature oxidation of carbon monoxide. Kinetics and Catalysis, 2009, 50, 819-823.	1.0	11
103	Complexes forming from ammonium paramolybdate, orthophosphoric acid, cobalt or nickel nitrate, and carbamide in solution and their use in the preparation of diesel fuel hydrodesulfurization catalysts. Kinetics and Catalysis, 2009, 50, 867-873.	1.0	8
104	The influence of the active component and support nature, gas mixture composition on physicochemical and catalytic properties of catalysts for soot oxidation. Journal of Molecular Catalysis A, 2009, 310, 101-112.	4.8	12
105	EXAFS study of oxide precursors of the high active Co–Mo hydrotreating catalysts: Effect of drying conditions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 603, 119-121.	1.6	5
106	Effect of mass transfer on the reaction rate in a monolithic catalyst with porous walls. Catalysis Today, 2009, 144, 258-264.	4.4	25
107	Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catalysis Today, 2009, 144, 201-211.	4.4	161
108	Title is missing!. Chemical Engineering Journal, 2009, 154, 1.	12.7	2

#	Article	IF	CITATIONS
109	Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Applied Catalysis B: Environmental, 2009, 90, 141-146.	20.2	45
110	Detoxication of nitrose gases formed in the production of adipic acid: The two-stage catalytic cleaning process. Catalysis in Industry, 2009, 1, 76-84.	0.7	5
111	Influence of the texture and acid-base properties of the alumina-containing support on the formation of Co(Ni)-Mo catalysts for deep hydrodesulfurization of the diesel fraction. Kinetics and Catalysis, 2008, 49, 791-801.	1.0	2
112	Influence of the heat treatment conditions on the activity of the CoMo/Al2O3 catalyst for deep hydrodesulfurization of diesel fractions. Kinetics and Catalysis, 2008, 49, 812-820.	1.0	10
113	Dependence of the properties of Ce-Zr-Y-La-M-O systems on synthetic conditions and on the nature of the transition metal M (Mn, Fe, Co). Kinetics and Catalysis, 2007, 48, 143-152.	1.0	4
114	Homogeneous high-temperature oxidation of methane. Reaction Kinetics and Catalysis Letters, 2007, 91, 273-282.	0.6	16
115	Formation of Pt(O)/Si(Ca)O2 nanofibers upon the reaction of platinum aerosol particles with a calcium-and silicon-containing material. Doklady Physical Chemistry, 2006, 407, 80-83.	0.9	0
116	Regeneration of a catalytic filter in the presence of highly flammable hydrocarbons in soot. Combustion, Explosion and Shock Waves, 2006, 42, 396-402.	0.8	4
117	Investigation of fine granular material flow through a packed bed. Chemical Engineering Science, 2006, 61, 2394-2405.	3.8	6
118	Research of mass-transfer in fibrous sorption-active materials. Catalysis Today, 2005, 105, 680-688.	4.4	9
119	Ammonia oxidation into nitrous oxide over Mn/Bi/Al catalystII. Fluidized bed reactor experiments. Chemical Engineering Journal, 2005, 107, 79-87.	12.7	8
120	Nitrous oxide in oxidation chemistry and catalysis: application and production. Catalysis Today, 2005, 100, 115-131.	4.4	214
121	Optimization of the active component distribution through the catalyst bed for the case of adiabatic reactor. Chemical Engineering Science, 2005, 60, 5792-5802.	3.8	13
122	Optimal Distribution of the Active Component in Catalytic Methane Oxidation. Theoretical Foundations of Chemical Engineering, 2005, 39, 478-486.	0.7	1
123	Catalysts Ru–CeO2/Sibunit for catalytic wet air oxidation of aniline and phenol. Topics in Catalysis, 2005, 33, 69-76.	2.8	20
124	Theoretical and Experimental Aspects of Using Structured Catalytic Systems. Kinetics and Catalysis, 2005, 46, 414-421.	1.0	6
125	In situ IR Spectroscopic and XPS Study of Surface Complexes and Their Transformations during Ammonia Oxidation to Nitrous Oxide over an Mn-Bi-O/ݱ-Al2O3 Catalyst. Kinetics and Catalysis, 2005, 46, 555-564.	1.0	15
126	Interaction of Al2O3 and CeO2 Surfaces with SO2 and SO2 + O2 Studied by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 11712-11719.	2.6	128

#	Article	IF	CITATIONS
127	The role of support in formation of the manganese–bismuth oxide catalyst for synthesis of nitrous oxide through oxidation of ammonia with oxygen. Journal of Catalysis, 2004, 221, 213-224.	6.2	24
128	Analysis of Thermal Processes in Catalytic Particulate Filters. Combustion, Explosion and Shock Waves, 2004, 40, 262-269.	0.8	3
129	Formation of Ru–M/Sibunit Catalysts for Ammonia Synthesis. Kinetics and Catalysis, 2004, 45, 414-421.	1.0	20
130	Optimization of the active component distribution through the catalyst bed. Chemical Engineering Science, 2004, 59, 1213-1220.	3.8	12
131	Studies of the mechanism of ammonia oxidation into nitrous oxide over Mnî—,Biî—,O/α-Al2O3 catalyst. Journal of Catalysis, 2004, 222, 129-142.	6.2	46
132	Improvement of the catalytic monoliths efficiency for CO oxidation using non-uniform active component distribution along the monolith length. Chemical Engineering Journal, 2004, 102, 35-44.	12.7	8
133	Title is missing!. Kinetics and Catalysis, 2003, 44, 575-583.	1.0	27
134	Title is missing!. Kinetics and Catalysis, 2003, 44, 648-651.	1.0	2
135	Modeling Active Centers in Ammonia Synthesis. DFT Study of Dissociative Adsorption of N2on Ru Clusters. Journal of Structural Chemistry, 2003, 44, 341-350.	1.0	5
136	Studies on the onset velocity of turbulent fluidization for alpha-alumina particles. Chemical Engineering Journal, 2003, 91, 215-218.	12.7	19
137	Ammonia oxidation into nitrous oxide over Mn/Bi/Al catalyst. Chemical Engineering Journal, 2003, 91, 235-242.	12.7	15
138	Motion of particles through the fixed bed in a gas–solid–solid downflow reactor. Chemical Engineering Journal, 2003, 91, 219-225.	12.7	6
139	77 Catalytic liquid-phase oxidation by oxygen for purification of industrial wastewater. Studies in Surface Science and Catalysis, 2003, 145, 359-362.	1.5	2
140	Optimization of the Active Component Distribution in a Catalyst Bed. Doklady Chemistry, 2002, 385, 228-231.	0.9	0
141	Deep Oxidation of Methane on Alumina–Manganese and Pt-Containing Catalysts. Journal of Catalysis, 2001, 198, 164-171.	6.2	8
142	Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives. Applied Catalysis A: General, 2000, 204, 59-87.	4.3	102
143	Oxidation of organic substances in aqueous solutions over Ru catalysts by oxygen. Journal of Environmental Management, 2000, 4, 123-132.	1.7	15
144	Mathematical modeling of unsteady-state operation taking into account adsorption and chemisorption processes on the catalyst pellet. Chemical Engineering Science, 1999, 54, 4639-4643.	3.8	10

#	Article	IF	CITATIONS
145	SO2 oxidation method. Mathematical modeling taking into account dynamic properties of the catalyst. Chemical Engineering Science, 1999, 54, 4475-4482.	3.8	9
146	Behavior of some deep oxidation catalysts under extreme conditions. 1. Comparison of resistance to thermal shock and SO2 poisoning. Applied Catalysis A: General, 1998, 167, 31-37.	4.3	34
147	Solid catalysts for wet oxidation of nitrogen-containing organic compounds. Catalysis Today, 1998, 45, 257-260.	4.4	34
148	Catalytic methods for detoxification of liquid, solid and gaseous industrial wastes. Critical Reviews in Analytical Chemistry, 1998, 28, 356-356.	3.5	0
149	Catalytic purification of gases from organic admixtures and nitrogen oxides in the regime of a moving heat wave. Combustion, Explosion and Shock Waves, 1997, 33, 284-293.	0.8	2
150	Effect of unsteady-state catalyst surface on the SCR-process. Catalysis Today, 1997, 38, 97-105.	4.4	13
151	Development of the adsorption-catalytic reverse-process for incineration of volatile organic compounds in diluted waste gases. Chemical Engineering Science, 1996, 51, 2989-2994.	3.8	21
152	Application of the nonstationary state of a catalyst surface for gas purification from toxic impurities. Catalysis Today, 1996, 27, 315-319.	4.4	19
153	The industrial plant for unsteady state purification of flue-gases from acrylonitrile and cyanic acid. Catalysis Today, 1993, 17, 251-259.	4.4	8
154	The decontamination of gases by unsteady-state catalytic method. Catalysis Today, 1993, 17, 261-273.	4.4	22
155	Reverse-process for NOx - off gases decontamination. Catalysis Today, 1993, 17, 293-300.	4.4	37
156	Effects of kinetic-equation form on catalytic combustion parameters in a stationary bed. Combustion, Explosion and Shock Waves, 1993, 29, 385-388.	0.8	0
157	Progress in reverse-process application to catalytic incineration problems. Chemical Engineering and Processing: Process Intensification, 1993, 32, 89-98.	3.6	33
158	Theory and application of unsteady catalytic detoxication of effluent gases from sulfur dioxide, nitrogen oxides and organic compounds. Chemical Engineering Science, 1988, 43, 2061-2066.	3.8	45
159	Unsteady-state performance of NOx catalytic reduction by NH3. Reaction Kinetics and Catalysis Letters, 1988, 37, 267-272.	0.6	26
160	On the Influence of Relativistic Contributions to Spin-Wave Spectrum on the Thermodynamics of Ferromagnets. Physica Status Solidi (B): Basic Research, 1970, 41, 861-870.	1.5	2
161	Carbon catalysts for waste water oxidative treatment. , 0, , .		0