
Mary Chebib

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576407/publications.pdf Version: 2024-02-01

MADY CHERIR

#	Article	IF	CITATIONS
1	Gain-of-function variants in <i>GABRD</i> reveal a novel pathway for neurodevelopmental disorders and epilepsy. Brain, 2022, 145, 1299-1309.	3.7	34
2	Roles of hydrophilic residues in GABA binding site of GABA-ïl receptor explain the addition/inhibition effects of competitive ligands. Neurochemistry International, 2022, 153, 105258.	1.9	3
3	Pharmacological Effect of GABA Analogues on GABA-ϱ2 Receptors and Their Subtype Selectivity. Life, 2022, 12, 127.	1.1	2
4	Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies. Nature Communications, 2022, 13, 1822.	5.8	32
5	The de novo <i>GABRA4</i> p.Thr300lle variant found in a patient with earlyâ€onset intractable epilepsy and neurodevelopmental abnormalities displays gainâ€ofâ€function traits. Epilepsia, 2022, 63, 2439-2441.	2.6	6
6	The anticonvulsant zonisamide positively modulates recombinant and native glycine receptors at clinically relevant concentrations. Neuropharmacology, 2021, 182, 108371.	2.0	3
7	Efficient expression of concatenated α1β2δand α1β3δGABA _A receptors, their pharmacology and stoichiometry. British Journal of Pharmacology, 2021, 178, 1556-1573.	2.7	6
8	Targeting GABAC Receptors Improves Post-Stroke Motor Recovery. Brain Sciences, 2021, 11, 315.	1.1	8
9	Cannabigerolic acid, a major biosynthetic precursor molecule in cannabis, exhibits divergent effects on seizures in mouse models of epilepsy. British Journal of Pharmacology, 2021, 178, 4826-4841.	2.7	32
10	Delta-containing GABAA receptors in pain management: Promising targets for novel analgesics. Neuropharmacology, 2021, 195, 108675.	2.0	10
11	Novel methyllycaconitine analogues selective for the α4β2 over α7 nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2021, 51, 116516.	1.4	2
12	AE Succinimide, an Analogue of Methyllycaconitine, When Bound Generates a Nonconducting Conformation of the α4l²2 Nicotinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2020, 11, 344-355.	1.7	3
13	Ligand-gated ion channels in genetic disorders and the question of efficacy. International Journal of Biochemistry and Cell Biology, 2020, 126, 105806.	1.2	3
14	The Z-Drugs Zolpidem, Zaleplon, and Eszopiclone Have Varying Actions on Human GABAA Receptors Containing γ1, γ2, and γ3 Subunits. Frontiers in Neuroscience, 2020, 14, 599812.	1.4	19
15	Gain-of-function <i>GABRB3</i> variants identified in vigabatrin-hypersensitive epileptic encephalopathies. Brain Communications, 2020, 2, fcaa162.	1.5	21
16	Coadministered cannabidiol and clobazam: Preclinical evidence for both pharmacodynamic and pharmacokinetic interactions. Epilepsia, 2019, 60, 2224-2234.	2.6	103
17	Novel Approach for the Search for Chemical Scaffolds with Activity at Both Acetylcholinesterase and the α7 Nicotinic Acetylcholine Receptor: A Perspective on Scaffolds with Dual Activity for the Treatment of Neurodegenerative Disorders. Molecules, 2019, 24, 446.	1.7	13
18	Concatenated γ-aminobutyric acid type A receptors revisited: Finding order in chaos. Journal of General Physiology, 2019, 151, 798-819.	0.9	12

#	Article	IF	CITATIONS
19	GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators. European Journal of Medicinal Chemistry, 2019, 171, 434-461.	2.6	41
20	Functional genomics of epilepsy-associated mutations in the GABAA receptor subunits reveal that one mutation impairs function and two are catastrophic. Journal of Biological Chemistry, 2019, 294, 6157-6171.	1.6	20
21	Revisiting autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) mutations in the nicotinic acetylcholine receptor reveal an increase in efficacy regardless of stochiometry. Pharmacological Research, 2019, 139, 215-227.	3.1	10
22	Optimising the transient expression of GABA(A) receptors in adherent HEK293 cells. Protein Expression and Purification, 2019, 154, 7-15.	0.6	0
23	The flavonoid, 2′-methoxy-6-methylflavone, affords neuroprotection following focal cerebral ischaemia. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1266-1282.	2.4	18
24	Galantamine is not a positive allosteric modulator of human α4β2 or α7 nicotinic acetylcholine receptors. British Journal of Pharmacology, 2018, 175, 2911-2925.	2.7	38
25	GABA _A receptors: Various stoichiometrics of subunit arrangement in α1β3 and α1β3ε receptors. Current Pharmaceutical Design, 2018, 24, 1839-1844.	0.9	7
26	The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABA A receptors. Pharmacological Research, 2017, 119, 358-370.	3.1	164
27	GABAâ€∔receptors: distinctive functions and molecular pharmacology. British Journal of Pharmacology, 2017, 174, 1881-1894.	2.7	39
28	GABA A Receptors and the Diversity in their Structure and Pharmacology. Advances in Pharmacology, 2017, 79, 1-34.	1.2	119
29	The Synthesis and Evaluation of Fluoroâ€, Trifluoromethylâ€, and Iodomuscimols as GABA Agonists. Chemistry - A European Journal, 2017, 23, 10848-10852.	1.7	7
30	Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State. PLoS ONE, 2016, 11, e0161154.	1.1	18
31	GABA-A Receptor Modulation and Anticonvulsant, Anxiolytic, and Antidepressant Activities of Constituents from <i>Artemisia indica</i> Linn. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-12.	0.5	32
32	Kavain, the Major Constituent of the Anxiolytic Kava Extract, Potentiates GABAA Receptors: Functional Characteristics and Molecular Mechanism. PLoS ONE, 2016, 11, e0157700.	1.1	59
33	A pharmacological assessment of agonists and modulators at α4β2γ2 and α4β2δ GABA A receptors: The challenge in comparing apples with oranges. Pharmacological Research, 2016, 111, 563-576.	3.1	35
34	A pharmacological characterization of GABA, THIP and DS2 at binary α4β3 and β3δ receptors: GABA activates β3δ receptors via the β3(+)δ(â~') interface. Brain Research, 2016, 1644, 222-230.	1.1	17
35	Zolpidem is a potent stoichiometry-selective modulator of α1β3 GABAA receptors: evidence of a novel benzodiazepine site in the α1-α1 interface. Scientific Reports, 2016, 6, 28674.	1.6	34
36	High and low GABA sensitivity α4β2δ GABAA receptors are expressed in Xenopus laevis oocytes with divergent stoichiometries. Biochemical Pharmacology, 2016, 103, 98-108.	2.0	23

#	Article	IF	CITATIONS
37	Investigating the Role of Loop C Hydrophilic Residue â€~T244' in the Binding Site of ÏI GABAC Receptors via Site Mutation and Partial Agonism. PLoS ONE, 2016, 11, e0156618.	1.1	7
38	Pinnatoxins E, F and G target multiple nicotinic receptor subtypes. Journal of Neurochemistry, 2015, 135, 479-491.	2.1	15
39	Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective. International Journal of Molecular Sciences, 2015, 16, 29029-29046.	1.8	51
40	Antidepressant, Anxiolytic and Antinociceptive Activities of Constituents from Rosmarinus Officinalis. Journal of Pharmacy and Pharmaceutical Sciences, 2015, 18, 448.	0.9	60
41	Interactions of Flavonoids with Ionotropic GABA Receptors. Advances in Pharmacology, 2015, 72, 189-200.	1.2	34
42	Oxytocin prevents ethanol actions at δ subunit-containing GABA _A receptors and attenuates ethanol-induced motor impairment in rats. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3104-3109.	3.3	70
43	GABAA receptor modulation and neuropharmacological activities of viscosine isolated from Dodonaea viscosa (Linn). Pharmacology Biochemistry and Behavior, 2015, 136, 64-72.	1.3	30
44	Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4–α4 interface. Neuropharmacology, 2015, 92, 135-145.	2.0	23
45	Comparison of templates for homology model of Ï∃ GABA C receptors: More insights to the orthosteric binding site's structure and functionality. Journal of Molecular Graphics and Modelling, 2015, 62, 43-55.	1.3	10
46	A Hydrophobic Area of the GABA 🖥 Receptor Containing Phenylalanine 124 Influences Both Receptor Activation and Deactivation. Journal of Molecular Neuroscience, 2015, 55, 305-313.	1.1	0
47	The Direct Actions of GABA, 2'-Methoxy-6-Methylflavone and General Anaesthetics at β3γ2L GABAA Receptors: Evidence for Receptors with Different Subunit Stoichiometries. PLoS ONE, 2015, 10, e0141359.	1.1	14
48	Regional Fos-expression induced by γ-hydroxybutyrate (GHB): Comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382. Neuroscience, 2014, 277, 700-715.	1.1	7
49	Modulation of Ionotropic GABA Receptors by 6-Methoxyflavanone and 6-Methoxyflavone. Neurochemical Research, 2014, 39, 1068-1078.	1.6	22
50	Presence of multiple binding sites on α9α10 nAChR receptors alludes to stoichiometric-dependent action of the α-conotoxin, Vc1.1. Biochemical Pharmacology, 2014, 89, 131-140.	2.0	34
51	GABAA Receptors Containing 🖥 Subunits Contribute to In Vivo Effects of Ethanol in Mice. PLoS ONE, 2014, 9, e85525.	1.1	50
52	Potency of GABA at human recombinant GABAA receptors expressed in Xenopus oocytes: a mini review. Amino Acids, 2013, 44, 1139-1149.	1.2	58
53	Design, Synthesis, and Pharmacological Evaluation of Fluorescent and Biotinylated Antagonists of ï ₁ GABA _C Receptors. ACS Medicinal Chemistry Letters, 2013, 4, 402-407.	1.3	22
54	Covalent Trapping of Methyllycaconitine at the α4-α4 Interface of the α4β2 Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2013, 288, 26521-26532.	1.6	17

#	Article	IF	CITATIONS
55	α4βδGABA _A receptors are high-affinity targets for γ-hydroxybutyric acid (GHB). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13404-13409.	3.3	87
56	The enantiomers of syn-2,3-difluoro-4-aminobutyric acid elicit opposite responses at the GABA _C receptor. Chemical Communications, 2012, 48, 829-831.	2.2	51
57	Covalent attachment of antagonists to the $\hat{l}\pm7$ nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides. Chemical Communications, 2012, 48, 6699.	2.2	12
58	2′â€Methoxyâ€6â€methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA _A receptors. British Journal of Pharmacology, 2012, 165, 880-896.	2.7	44
59	Low nanomolar GABA effects at extrasynaptic α4β1/β3Ĩ´GABAA receptor subtypes indicate a different binding mode for GABA at these receptors. Biochemical Pharmacology, 2012, 84, 549-557.	2.0	37
60	Novel Cyclic Phosphinic Acids as GABA _C ϕReceptor Antagonists: Design, Synthesis, and Pharmacology. ACS Medicinal Chemistry Letters, 2011, 2, 11-16.	1.3	27
61	Flavonoid modulation of GABA _A receptors. British Journal of Pharmacology, 2011, 163, 234-245.	2.7	192
62	Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapinâ€Q. British Journal of Pharmacology, 2011, 163, 1017-1033.	2.7	49
63	3-Hydroxy-2′-methoxy-6-methylflavone: A potent anxiolytic with a unique selectivity profile at GABAA receptor subtypes. Biochemical Pharmacology, 2011, 82, 1971-1983.	2.0	37
64	Identifying the Binding Site of Novel Methyllycaconitine (MLA) Analogs at α4β2 Nicotinic Acetylcholine Receptors. ACS Chemical Neuroscience, 2010, 1, 796-809.	1.7	11
65	Novel, Potent, and Selective GABA _C Antagonists Inhibit Myopia Development and Facilitate Learning and Memory. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 448-457.	1.3	71
66	Alpha9 nicotinic acetylcholine receptors and the treatment of pain. Biochemical Pharmacology, 2009, 78, 693-702.	2.0	132
67	Guanidino Acids Act as 🗓 GABAC Receptor Antagonists. Neurochemical Research, 2009, 34, 1704-1711.	1.6	22
68	The Flavonoid Glycosides, Myricitrin, Gossypin and Naringin Exert Anxiolytic Action in Mice. Neurochemical Research, 2009, 34, 1867-1875.	1.6	94
69	Flavan-3-ol derivatives are positive modulators of GABAA receptors with higher efficacy for the α2 subtype and anxiolytic action in mice. Neuropharmacology, 2008, 55, 900-907.	2.0	49
70	(3-Aminocyclopentyl)methylphosphinic acids: Novel GABAC receptor antagonists. Neuropharmacology, 2007, 52, 779-787.	2.0	10
71	Modulation of Ionotropic GABA Receptors by Natural Products of Plant Origin. Advances in Pharmacology, 2006, 54, 285-316.	1.2	80
72	Methyllycaconitine analogues have mixed antagonist effects at nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry, 2005, 13, 4565-4575.	1.4	61

#	Article	IF	CITATIONS
73	6-Methylflavanone, a more efficacious positive allosteric modulator of γ-aminobutyric acid (GABA) action at human recombinant α2β2γ2L than at α1β2γ2L and α1β2 GABAA receptors expressed in Xenopus oo European Journal of Pharmacology, 2005, 512, 97-104.	cytæs.	36
74	Flumazenil-independent positive modulation of γ-aminobutyric acid action by 6-methylflavone at human recombinant α1β2γ2L and α1β2 GABAA receptors. European Journal of Pharmacology, 2004, 491, 1-8.	1.7	40
75	The dietary flavonoids apigenin and (â^')-epigallocatechin gallate enhance the positive modulation by diazepam of the activation by GABA of recombinant GABAA receptors. Biochemical Pharmacology, 2004, 68, 1631-1638.	2.0	129
76	Stabilization of Zwitterions in Solution:  γ-Aminobutyric Acid (GABA). Journal of Physical Chemistry A, 2004, 108, 203-211.	1.1	42
77	Role of Aβ and the α7 nicotinic acetylcholine receptor in regulating synaptic plasticity in Alzheimer's disease. International Journal of Peptide Research and Therapeutics, 2003, 10, 401-404.	0.1	1
78	Convulsant actions of calycanthine. Toxicology and Applied Pharmacology, 2003, 190, 58-64.	1.3	19
79	Role of A β and the α 7 nicotinic acetylcholine receptor in regulating synaptic plasticity in Alzheimer's disease. International Journal of Peptide Research and Therapeutics, 2003, 10, 401-404.	0.9	0
80	An improved, versatile synthesis of the GABAC antagonists (1.2.5.6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and (piperidin-4-yl)methylphosphinic acid	13	25

(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and (piperidin-4-yl)methylphosphinic acid (TPMPA) and (piperidin-4-yl)methylphosp