

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763972/publications.pdf Version: 2024-02-01

YONG HE

#	Article	IF	CITATIONS
1	Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/N3/N3/CO/air and NH3/CH4/air premixed flames. Combustion and Flame, 2019, 206, 214-226.	5.2	353
2	Experimental study and kinetic analysis of the laminar burning velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air premixed flames at elevated pressures. Combustion and Flame, 2020, 221, 270-287.	5.2	141
3	Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames. Combustion and Flame, 2020, 213, 1-13.	5.2	140
4	Flue gas treatment with ozone oxidation: An overview on NO , organic pollutants, and mercury. Chemical Engineering Journal, 2020, 382, 123030.	12.7	129
5	Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures. Fuel, 2016, 185, 701-708.	6.4	100
6	Low temperature catalytic ozonation of toluene in flue gas over Mn-based catalysts: Effect of support property and SO2/water vapor addition. Applied Catalysis B: Environmental, 2020, 266, 118662.	20.2	93
7	Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames. Combustion and Flame, 2021, 229, 111392.	5.2	93
8	The temperature dependence of the laminar burning velocity and superadiabatic flame temperature phenomenon for NH3/air flames. Combustion and Flame, 2020, 217, 314-320.	5.2	81
9	Investigation of laminar flame speeds of typical syngas using laser based Bunsen method and kinetic simulation. Fuel, 2012, 95, 206-213.	6.4	73
10	Catalytic effect of metal chlorides on coal pyrolysis and gasification part I. Combined TG-FTIR study for coal pyrolysis. Thermochimica Acta, 2017, 655, 331-336.	2.7	61
11	Characteristics of O ₃ Oxidation for Simultaneous Desulfurization and Denitration with Limestone–Gypsum Wet Scrubbing: Application in a Carbon Black Drying Kiln Furnace. Energy & Fuels, 2016, 30, 2302-2308.	5.1	59
12	Transcriptome and key genes expression related to carbon fixation pathways in Chlorella PY-ZU1 cells and their growth under high concentrations of CO2. Biotechnology for Biofuels, 2017, 10, 181.	6.2	58
13	Parametrization of the temperature dependence of laminar burning velocity for methane and ethane flames. Fuel, 2019, 239, 1028-1037.	6.4	57
14	Multi-stage semi-coke activation for the removal of SO2 and NO. Fuel, 2017, 210, 738-747.	6.4	54
15	N ₂ O ₅ Formation Mechanism during the Ozone-Based Low-Temperature Oxidation deNO _{<i>x</i>) Sub> Process. Energy & Supperson Supperso}	5.1	51
16	Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method. Fuel, 2020, 259, 116152.	6.4	48
17	Effects of CO content on laminar burning velocity of typical syngas by heat flux method and kinetic modeling. International Journal of Hydrogen Energy, 2014, 39, 9534-9544.	7.1	44
18	Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure. Journal Physics D: Applied Physics, 2016, 49, 455203.	2.8	43

#	Article	IF	CITATIONS
19	Pyrolysis Characteristics and Evolution of Char Structure during Pulverized Coal Pyrolysis in Drop Tube Furnace: Influence of Temperature. Energy & Fuels, 2017, 31, 4799-4807.	5.1	40
20	Catalytic oxidation of NO by O ₂ over CeO ₂ –MnO _x : SO ₂ poisoning mechanism. RSC Advances, 2016, 6, 31422-31430.	3.6	38
21	In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2 using Raman microspectroscopy. Bioresource Technology, 2017, 244, 1439-1444.	9.6	37
22	Catalytic effect of metal chlorides on coal pyrolysis and gasification part â¡. Effects of acid washing on coal characteristics. Thermochimica Acta, 2018, 666, 41-50.	2.7	35
23	Quantitative Measurement of Atomic Potassium in Plumes over Burning Solid Fuels Using Infrared-Diode Laser Spectroscopy. Energy & Fuels, 2017, 31, 2831-2837.	5.1	34
24	Experimental and kinetic modeling study of NO formation in premixed CH4+O2+N2 flames. Combustion and Flame, 2021, 223, 349-360.	5.2	33
25	Characteristics of Dielectric Barrier Discharge Ozone Synthesis for Different Pulse Modes. Plasma Chemistry and Plasma Processing, 2017, 37, 1165-1173.	2.4	26
26	Ozone Production with Dielectric Barrier Discharge from Air: The Influence of Pulse Polarity. Ozone: Science and Engineering, 2018, 40, 494-502.	2.5	26
27	Pyrolysis Characteristics of Coal, Biomass, and Coal–Biomass Blends under High Heating Rate Conditions: Effects of Particle Diameter, Fuel Type, and Mixing Conditions. Energy & Fuels, 2015, 29, 5036-5046.	5.1	25
28	Investigation of NO Removal with Ozone Deep Oxidation in Na2CO3 Solution. Energy & Fuels, 2019, 33, 4454-4461.	5.1	24
29	Volatile gas release characteristics of three typical Chinese coals under various pyrolysis conditions. Journal of the Energy Institute, 2018, 91, 1045-1056.	5.3	23
30	Over-rich combustion of CH4, C2H6, and C3H8 +air premixed flames investigated by the heat flux method and kinetic modeling. Combustion and Flame, 2019, 210, 339-349.	5.2	23
31	In Situ Measurements of the Release Characteristics and Catalytic Effects of Different Chemical Forms of Sodium during Combustion of Zhundong Coal. Energy & Fuels, 2018, 32, 6595-6602.	5.1	22
32	Gasification characteristics of different rank coals at H2O and CO2 atmospheres. Journal of Analytical and Applied Pyrolysis, 2016, 122, 76-83.	5.5	20
33	High-temperature pyrolysis behavior of two different rank coals in fixed-bed and drop tube furnace reactors. Journal of the Energy Institute, 2020, 93, 2271-2279.	5.3	20
34	Interplay effect on simultaneous catalytic oxidation of NO and toluene over different crystal types of MnO2 catalysts. Proceedings of the Combustion Institute, 2021, 38, 5433-5441.	3.9	20
35	Catalytic performance and durability of Ni/AC for HI decomposition in sulfur–iodine thermochemical cycle for hydrogen production. Energy Conversion and Management, 2016, 117, 520-527.	9.2	19
36	High-temperature pyrolysis behavior of a bituminous coal in a drop tube furnace and further characterization of the resultant char. Journal of Analytical and Applied Pyrolysis, 2019, 137, 163-170.	5.5	18

#	Article	IF	CITATIONS
37	Temperature dependence of the laminar burning velocity for n-heptane and iso-octane/air flames. Fuel, 2020, 276, 118007.	6.4	17
38	Structure and combustion characteristics of semi-cokes from a pilot-scale entrained flow gasifier using oxygen-enriched air. Journal of the Energy Institute, 2021, 97, 80-91.	5.3	17
39	Experimental and numerical study of the effect of elevated pressure on laminar burning velocity of lean H2/CO/O2/diluents flames. Fuel, 2020, 273, 117753.	6.4	16
40	SO3 decomposition over CuO–CeO2 based catalysts in the sulfur–iodine cycle for hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 14876-14884.	7.1	15
41	Hydrogen Sulfide Promotes Cell Division and Photosynthesis of <i>Nannochloropsis oceanica</i> with 15% Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 16344-16354.	6.7	15
42	Effects of gas preheat temperature on soot formation in co-flow methane and ethylene diffusion flames. Proceedings of the Combustion Institute, 2021, 38, 1225-1232.	3.9	15
43	Effects of Microwave Irradiation on Combustion and Sodium Release Characteristics of Zhundong Lignite. Energy & Fuels, 2016, 30, 8977-8984.	5.1	14
44	Catalytic performance of semi-coke on hydrogen iodide decomposition in sulfur-iodine thermochemical cycle for carbon dioxide-free hydrogen production. Energy Conversion and Management, 2018, 173, 659-664.	9.2	13
45	High-Performance Pt Catalyst with Graphene/Carbon Black as a Hybrid Support for SO ₂ Electrocatalytic Oxidation. Langmuir, 2020, 36, 20-27.	3.5	13
46	Carbon membrane performance on hydrogen separation in H2H2O HI gaseous mixture system in the sulfur-iodine thermochemical cycle. International Journal of Hydrogen Energy, 2017, 42, 3708-3715.	7.1	12
47	Catalytic Effect of Metal Chloride Additives on the Volatile Gas Release Characteristics for High-Temperature Lignite Pyrolysis. Energy & Fuels, 2019, 33, 9437-9445.	5.1	12
48	Characteristics of temperature distribution in atmospheric pulsed surface dielectric barrier discharge for ozone production. Vacuum, 2020, 176, 109351.	3.5	11
49	Effects of the Gas Preheat Temperature and Nitrogen Dilution on Soot Formation in Co-flow Methane, Ethane, and Propane Diffusion Flames. Energy & Fuels, 2021, 35, 7169-7178.	5.1	11
50	Catalytic Decomposition of Residual Ozone over Cactus-like MnO ₂ Nanosphere: Synergistic Mechanism and SO ₂ /H ₂ O Interference. ACS Omega, 2022, 7, 9818-9833.	3.5	11
51	Introduction and preliminary testing of a 5Âm3/h hydrogen production facility by Iodine–Sulfur thermochemical process. International Journal of Hydrogen Energy, 2022, 47, 25117-25129.	7.1	11
52	Ru@Pt/C core-shell catalyst for SO2 electrocatalytic oxidation in electrochemical Bunsen reaction. Electrochimica Acta, 2020, 331, 135315.	5.2	10
53	Demetallized PtxNiy/C catalyst for SO2 electrochemical oxidation in the SI/HyS hydrogen production cycles. International Journal of Hydrogen Energy, 2021, 46, 10161-10171.	7.1	10
54	Effects of CH ₄ Content on NO Formation in One-Dimensional Adiabatic Flames Investigated by Saturated Laser-Induced Fluorescence and CHEMKIN Modeling. Energy & Fuels, 2017, 31, 3154-3163.	5.1	9

#	Article	IF	CITATIONS
55	Effect of iodine precipitation on HI separation subsection in sulfur-iodine cycle for hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 10896-10904.	7.1	9
56	NO _{<i>x</i>} Reduction in a 130 t/h Biomass-Fired Circulating Fluid Bed Boiler Using Coupled Ozonation and Wet Absorption Technology. Industrial & Engineering Chemistry Research, 2019, 58, 18134-18140.	3.7	9
57	Effects of Nafion content in membrane electrode assembly on electrochemical Bunsen reaction in high electrolyte acidity. International Journal of Hydrogen Energy, 2019, 44, 11646-11654.	7.1	9
58	Combined conventional thermal and microwave drying process for typical Chinese lignite. Drying Technology, 2019, 37, 813-823.	3.1	9
59	Uniqueness and similarity in flame propagation of pre-dissociated NH3Â+Âair and NH3Â+ÂH2Â+Âair mixtures: An experimental and modelling study. Fuel, 2022, 327, 125159.	6.4	9
60	Influences of Hydrothermal Modification on Nitrogen Thermal Conversion of Low-Rank Coals. Energy & Fuels, 2016, 30, 8125-8133.	5.1	8
61	Catalyst tolerance to SO ₂ and water vapor of Mn based bimetallic oxides for NO deep oxidation by ozone. RSC Advances, 2017, 7, 25132-25143.	3.6	8
62	Ozone Production Influenced by Increasing Gas Pressure in Multichannel Dielectric Barrier Discharge for Positive and Negative Pulse Modes. Ozone: Science and Engineering, 2018, 40, 228-236.	2.5	7
63	Influence of catalyst coated membranes on electrochemical bunsen reaction in the sulfur-iodine cycle. International Journal of Hydrogen Energy, 2019, 44, 9735-9742.	7.1	7
64	Interactive Effects in Two-Droplets Combustion of RP-3 Kerosene under Sub-Atmospheric Pressure. Processes, 2021, 9, 1229.	2.8	7
65	The Benefits of Small Quantities of Nitrogen in the Oxygen Feed to Ozone Generators. Ozone: Science and Engineering, 2018, 40, 313-320.	2.5	6
66	Morphological Characteristics of Chars Obtained from Low-Temperature Pyrolysis of Pulverized Lignite. Journal of Energy Engineering - ASCE, 2018, 144, 04018016.	1.9	6
67	H2SO4 poisoning of Ru-based and Ni-based catalysts for HI decomposition in Sulfur Iodine cycle for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 9771-9778.	7.1	6
68	Effects of Hydrothermal Modification on Sulfur Release of Low-Quality Coals During Thermal Transformation Process. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	2.3	5
69	SO ₂ Electrocatalytic Oxidation Properties of Pt–Ru/C Bimetallic Catalysts with Different Nanostructures. Langmuir, 2020, 36, 3111-3118.	3.5	5
70	Effects of CO ₂ Dilution and CH ₄ Addition on Laminar Burning Velocities of Syngas at Elevated Pressures: An Experimental and Modeling Study. Energy & Fuels, 2021, 35, 18733-18745.	5.1	5
71	Reactions and transformations of mineral matters during entrained flow coal gasification using oxygen-enriched air. Journal of the Energy Institute, 2022, 102, 229-239.	5.3	5
72	<pre><scp>LCA</scp> comparison analysis for two types of <scp> H ₂ </scp> carriers: Methanol and ammonia. International Journal of Energy Research, 2022, 46, 11818-11833.</pre>	4.5	5

#	Article	IF	CITATIONS
73	Metal chloride influence on syngas component during coal pyrolysis in fixed-bed and entrained flow drop-tube furnace. Science China Technological Sciences, 2019, 62, 2029-2037.	4.0	4
74	Kinetics and Mechanisms of Metal Chlorides Catalysis for Coal Char Gasification with CO2. Catalysts, 2020, 10, 715.	3.5	4
75	Investigation of flame and burner plate interaction during the heat flux method used for laminar burning velocity measurement. Fuel, 2020, 266, 117051.	6.4	4
76	Investigation of Hydrogen Content and Dilution Effect on Syngas/Air Premixed Turbulent Flame Using OH Planar Laser-Induced Fluorescence. Processes, 2021, 9, 1894.	2.8	4
77	Decomposition of N ₂ 0 on ZIF-67-Derived Co/CoO _{<i>x</i>} @Carbon Catalysts and SO ₂ Interference. Energy & Fuels, 2021, 35, 18664-18679.	5.1	4
78	A projection procedure to obtain adiabatic flames from non-adiabatic flames using heat flux method. Proceedings of the Combustion Institute, 2021, 38, 2143-2151.	3.9	3
79	Catalyst Screening and Development for HI Decomposition in Sulfur-iodine Thermochemical Cycle for Hydrogen Production. Chemistry Letters, 2018, 47, 700-703.	1.3	2
80	Impact of Pyrolysis Products on <i>n</i> -Decane Laminar Flame Speeds Investigated through Experimentation and Kinetic Simulations. Energy & Fuels, 2021, 35, 8194-8204.	5.1	2
81	Comparative Study of Four Chemometric Methods for the Quantitative Analysis of the Carbon Content in Coal by Laser-Induced Breakdown Spectroscopy Technology. ACS Omega, 2022, 7, 9443-9451.	3.5	2
82	Investigation of Dilution Effect on CH4/Air Premixed Turbulent Flame Using OH and CH2O Planar Laser-Induced Fluorescence. Energies, 2020, 13, 325.	3.1	1
83	Challenge of coal combustion and technology development for Multi-pollutant emission control. The Proceedings of the International Conference on Power Engineering (ICOPE), 2015, 2015.12, C1-C18.	0.0	Ο