David Reich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763781/publications.pdf

Version: 2024-02-01

154 papers 55,299 citations

76 h-index 156 g-index

187 all docs

187 docs citations

times ranked

187

44614 citing authors

#	Article	IF	CITATIONS
1	Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38, 904-909.	9.4	8,889
2	Population Structure and Eigenanalysis. PLoS Genetics, 2006, 2, e190.	1.5	4,163
3	A Draft Sequence of the Neandertal Genome. Science, 2010, 328, 710-722.	6.0	3,588
4	Ancient Admixture in Human History. Genetics, 2012, 192, 1065-1093.	1.2	2,012
5	The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 2014, 505, 43-49.	13.7	1,830
6	A High-Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 2012, 338, 222-226.	6.0	1,695
7	Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 2010, 468, 1053-1060.	13.7	1,537
8	Reconstructing Indian population history. Nature, 2009, 461, 489-494.	13.7	1,442
9	Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 2015, 522, 207-211.	13.7	1,435
10	The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature, 2016, 538, 201-206.	13.7	1,216
11	Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014, 513, 409-413.	13.7	1,179
12	Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 2015, 528, 499-503.	13.7	1,160
13	Testing for Ancient Admixture between Closely Related Populations. Molecular Biology and Evolution, 2011, 28, 2239-2252.	3.5	1,078
14	Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Research, 2012, 22, 939-946.	2.4	976
15	The genomic landscape of Neanderthal ancestry in present-day humans. Nature, 2014, 507, 354-357.	13.7	877
16	Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 2014, 514, 445-449.	13.7	856
17	Genomic insights into the origin of farming in the ancient Near East. Nature, 2016, 536, 419-424.	13.7	733
18	The genetic history of Ice Age Europe. Nature, 2016, 534, 200-205.	13.7	729

#	Article	IF	Citations
19	Reconstructing Native American population history. Nature, 2012, 488, 370-374.	13.7	699
20	An early modern human from Romania with a recent Neanderthal ancestor. Nature, 2015, 524, 216-219.	13.7	633
21	A Revised Timescale for Human Evolution Based on Ancient Mitochondrial Genomes. Current Biology, 2013, 23, 553-559.	1.8	540
22	Insights into human genetic variation and population history from 929 diverse genomes. Science, 2020, 367, .	6.0	534
23	Denisova Admixture and the First Modern Human Dispersals into Southeast Asia and Oceania. American Journal of Human Genetics, 2011, 89, 516-528.	2.6	525
24	The Genetic Ancestry of African Americans, Latinos, and European Americans across the United States. American Journal of Human Genetics, 2015, 96, 37-53.	2.6	516
25	The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, 2018, 555, 190-196.	13.7	503
26	A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, 2017, 358, 655-658.	6.0	501
27	The genomic history of southeastern Europe. Nature, 2018, 555, 197-203.	13.7	479
28	Inferring Admixture Histories of Human Populations Using Linkage Disequilibrium. Genetics, 2013, 193, 1233-1254.	1.2	445
29	Methods for High-Density Admixture Mapping of Disease Genes. American Journal of Human Genetics, 2004, 74, 979-1000.	2.6	437
30	The formation of human populations in South and Central Asia. Science, 2019, 365, .	6.0	383
31	Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130624.	1.8	381
32	The Combined Landscape of Denisovan and Neanderthal Ancestry in Present-Day Humans. Current Biology, 2016, 26, 1241-1247.	1.8	377
33	Genetic evidence for two founding populations of the Americas. Nature, 2015, 525, 104-108.	13.7	348
34	The genomic history of the Iberian Peninsula over the past 8000 years. Science, 2019, 363, 1230-1234.	6.0	340
35	Reduced Neutrophil Count in People of African Descent Is Due To a Regulatory Variant in the Duffy Antigen Receptor for Chemokines Gene. PLoS Genetics, 2009, 5, e1000360.	1.5	335
36	Gibbon genome and the fast karyotype evolution of small apes. Nature, 2014, 513, 195-201.	13.7	320

#	Article	IF	Citations
37	The landscape of recombination in African Americans. Nature, 2011, 476, 170-175.	13.7	319
38	Reconstructing Prehistoric African Population Structure. Cell, 2017, 171, 59-71.e21.	13.5	308
39	Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Science Advances, 2016, 2, e1501385.	4.7	306
40	Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature, 2017, 551, 368-372.	13.7	306
41	Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity. Science, 2013, 342, 257-261.	6.0	293
42	Global diversity, population stratification, and selection of human copy-number variation. Science, 2015, 349, aab3761.	6.0	293
43	Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. ELife, 2019, 8, .	2.8	276
44	The genetic prehistory of southern Africa. Nature Communications, 2012, 3, 1143.	5.8	271
45	Complete Genomes Reveal Signatures of Demographic and Genetic Declines in the Woolly Mammoth. Current Biology, 2015, 25, 1395-1400.	1.8	263
46	Genomic insights into the peopling of the Southwest Pacific. Nature, 2016, 538, 510-513.	13.7	262
47	Reconstructing the Deep Population History of Central and South America. Cell, 2018, 175, 1185-1197.e22.	13.5	259
48	Ancient genomes document multiple waves of migration in Southeast Asian prehistory. Science, 2018, 361, 92-95.	6.0	250
49	Measurement of the human allele frequency spectrum demonstrates greater genetic drift in East Asians than in Europeans. Nature Genetics, 2007, 39, 1251-1255.	9.4	249
50	Ancient west Eurasian ancestry in southern and eastern Africa. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2632-2637.	3.3	246
51	A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nature Genetics, 2005, 37, 1113-1118.	9.4	243
52	Genetic Evidence for Recent Population Mixture in India. American Journal of Human Genetics, 2013, 93, 422-438.	2.6	234
53	Toward a new history and geography of human genes informed by ancient DNA. Trends in Genetics, 2014, 30, 377-389.	2.9	227
54	The History of African Gene Flow into Southern Europeans, Levantines, and Jews. PLoS Genetics, 2011, 7, e1001373.	1.5	224

#	Article	IF	Citations
55	Genomic insights into the formation of human populations in East Asia. Nature, 2021, 591, 413-419.	13.7	216
56	Ancient DNA indicates human population shifts and admixture in northern and southern China. Science, 2020, 369, 282-288.	6.0	214
57	Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nature Communications, 2017, 8, 14115.	5.8	210
58	Genetic origins of the Minoans and Mycenaeans. Nature, 2017, 548, 214-218.	13.7	203
59	Reconstructing the genetic history of late Neanderthals. Nature, 2018, 555, 652-656.	13.7	197
60	No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nature Genetics, 2015, 47, 126-131.	9.4	182
61	Admixture Mapping of an Allele Affecting Interleukin 6 Soluble Receptor and Interleukin 6 Levels. American Journal of Human Genetics, 2007, 80, 716-726.	2.6	160
62	Reconstructing Austronesian population history in Island Southeast Asia. Nature Communications, 2014, 5, 4689.	5.8	158
63	Ancient genomes indicate population replacement in Early Neolithic Britain. Nature Ecology and Evolution, 2019, 3, 765-771.	3.4	156
64	The genetic prehistory of the Baltic Sea region. Nature Communications, 2018, 9, 442.	5.8	151
65	A comprehensive genomic history of extinct and living elephants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2566-E2574.	3.3	142
66	A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5652-5657.	3.3	141
67	The contribution of rare variation to prostate cancer heritability. Nature Genetics, 2016, 48, 30-35.	9.4	139
68	The genetic history of admixture across inner Eurasia. Nature Ecology and Evolution, 2019, 3, 966-976.	3.4	135
69	The promise of discovering population-specific disease-associated genes in South Asia. Nature Genetics, 2017, 49, 1403-1407.	9.4	129
70	Efficient Moment-Based Inference of Admixture Parameters and Sources of Gene Flow. Molecular Biology and Evolution, 2013, 30, 1788-1802.	3.5	121
71	Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature, 2019, 570, 236-240.	13.7	118
72	Current evidence allows multiple models for the peopling of the Americas. Science Advances, 2018, 4, eaat5473.	4.7	114

#	Article	IF	CITATIONS
73	Ancient human genome-wide data from a 3000-year interval in the Caucasus corresponds with eco-geographic regions. Nature Communications, 2019, 10, 590.	5.8	113
74	A genomic view of the peopling of the Americas. Current Opinion in Genetics and Development, 2016, 41, 27-35.	1.5	103
75	Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe. Nature Communications, 2017, 8, 14615.	5.8	96
76	Ancient DNA reveals a multistep spread of the first herders into sub-Saharan Africa. Science, 2019, 365,	6.0	96
77	Genetic history from the Middle Neolithic to present on the Mediterranean island of Sardinia. Nature Communications, 2020, 11, 939.	5.8	96
78	The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nature Ecology and Evolution, 2020, 4, 334-345.	3.4	95
79	Non-crossover gene conversions show strong GC bias and unexpected clustering in humans. ELife, 2015, 4, .	2.8	95
80	Population Turnover in Remote Oceania Shortly after Initial Settlement. Current Biology, 2018, 28, 1157-1165.e7.	1.8	91
81	Differences in the rare variant spectrum among human populations. PLoS Genetics, 2017, 13, e1006581.	1.5	88
82	Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science, 2020, 368, 731-736.	6.0	86
83	Ancient West African foragers in the context of African population history. Nature, 2020, 577, 665-670.	13.7	86
84	Large-scale migration into Britain during the Middle to Late Bronze Age. Nature, 2022, 601, 588-594.	13.7	86
85	African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genome Biology, 2019, 20, 82.	3.8	84
86	Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics, $2021, 217, .$	1.2	84
87	Will admixture mapping work to find disease genes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1605-1607.	1.8	78
88	Dominance of Deleterious Alleles Controls the Response to a Population Bottleneck. PLoS Genetics, 2015, 11, e1005436.	1.5	78
89	Interpreting short tandem repeat variations in humans using mutational constraint. Nature Genetics, 2017, 49, 1495-1501.	9.4	78
90	Extreme selective sweeps independently targeted the X chromosomes of the great apes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6413-6418.	3.3	75

#	Article	IF	Citations
91	Ancient DNA from Chalcolithic Israel reveals the role of population mixture in cultural transformation. Nature Communications, 2018, 9, 3336.	5.8	71
92	Leveraging population admixture to characterize the heritability of complex traits. Nature Genetics, 2014, 46, 1356-1362.	9.4	69
93	Genome-wide Scan of 29,141 African Americans Finds No Evidence of Directional Selection since Admixture. American Journal of Human Genetics, 2014, 95, 437-444.	2.6	69
94	Reconciling material cultures in archaeology with genetic data: The nomenclature of clusters emerging from archaeogenomic analysis. Scientific Reports, 2018, 8, 13003.	1.6	69
95	A Paleogenomic Reconstruction of the Deep Population History of the Andes. Cell, 2020, 181, 1131-1145.e21.	13.5	69
96	Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nature Communications, 2020, 11, 1189.	5.8	69
97	A genetic history of the pre-contact Caribbean. Nature, 2021, 590, 103-110.	13.7	67
98	A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature, 2022, 601, 584-587.	13.7	65
99	An Ancient Harappan Genome Lacks Ancestry from Steppe Pastoralists or Iranian Farmers. Cell, 2019, 179, 729-735.e10.	13.5	62
100	A unified genealogy of modern and ancient genomes. Science, 2022, 375, eabi8264.	6.0	59
101	A working model of the deep relationships of diverse modern human genetic lineages outside of Africa. Molecular Biology and Evolution, 2017, 34, msw293.	3.5	55
102	The Promise of Paleogenomics Beyond Our Own Species. Trends in Genetics, 2019, 35, 319-329.	2.9	55
103	The Genomic History of the Bronze Age Southern Levant. Cell, 2020, 181, 1146-1157.e11.	13.5	51
104	Ancient DNA and deep population structure in sub-Saharan African foragers. Nature, 2022, 603, 290-296.	13.7	51
105	Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution. ELife, 2017, 6, .	2.8	50
106	Calibrating the Human Mutation Rate via Ancestral Recombination Density in Diploid Genomes. PLoS Genetics, 2015, 11, e1005550.	1.5	49
107	Ethics of DNA research on human remains: five globally applicable guidelines. Nature, 2021, 599, 41-46.	13.7	49
108	Dairying enabled Early Bronze Age Yamnaya steppe expansions. Nature, 2021, 598, 629-633.	13.7	47

#	Article	IF	Citations
109	Dynamic changes in genomic and social structures in third millennium BCE central Europe. Science Advances, $2021, 7, .$	4.7	46
110	Arrival routes of first Americans uncertain. Science, 2018, 359, 1224-1225.	6.0	42
111	A Re-Appraisal of the Early Andean Human Remains from Lauricocha in Peru. PLoS ONE, 2015, 10, e0127141.	1.1	41
112	A multi-stage genome-wide association study of uterine fibroids in African Americans. Human Genetics, 2017, 136, 1363-1373.	1.8	39
113	Biological Sexing of a 4000-Year-Old Egyptian Mummy Head to Assess the Potential of Nuclear DNA Recovery from the Most Damaged and Limited Forensic Specimens. Genes, 2018, 9, 135.	1.0	39
114	Genomic transformation and social organization during the Copper Age–Bronze Age transition in southern Iberia. Science Advances, 2021, 7, eabi7038.	4.7	39
115	Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Research, 2020, 30, 427-436.	2.4	37
116	Interactions between earliest Linearbandkeramik farmers and central European hunter gatherers at the dawn of European Neolithization. Scientific Reports, 2019, 9, 19544.	1.6	35
117	Kinship and social organization in Copper Age Europe. A cross-disciplinary analysis of archaeology, DNA, isotopes, and anthropology from two Bell Beaker cemeteries. PLoS ONE, 2020, 15, e0241278.	1.1	35
118	A minimally destructive protocol for DNA extraction from ancient teeth. Genome Research, 2021, 31, 472-483.	2.4	31
119	Stone Age <i>Yersinia pestis</i> genomes shed light on the early evolution, diversity, and ecology of plague. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116722119.	3.3	31
120	ContamLD: estimation of ancient nuclear DNA contamination using breakdown of linkage disequilibrium. Genome Biology, 2020, 21, 199.	3.8	29
121	Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 379-384.	3.3	28
122	Ancient genomes in South Patagonia reveal population movements associated with technological shifts and geography. Nature Communications, 2020, 11, 3868.	5.8	28
123	Three Phases of Ancient Migration Shaped the Ancestry of Human Populations in Vanuatu. Current Biology, 2020, 30, 4846-4856.e6.	1.8	27
124	Whole-exome sequencing of over 4100 men of African ancestry and prostate cancer risk. Human Molecular Genetics, 2016, 25, 371-381.	1.4	26
125	Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell, 2022, 185, 1402-1413.e21.	13.5	26
126	Ancient DNA reveals monozygotic newborn twins from the Upper Palaeolithic. Communications Biology, 2020, 3, 650.	2.0	25

#	Article	IF	CITATIONS
127	Genome diversity in the Neolithic Globular Amphorae culture and the spread of Indo-European languages. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171540.	1.2	24
128	A Late Bronze Age II clay coffin from Tel Shaddud in the Central Jezreel Valley, Israel: context and historical implications. Levant, 2017, 49, 105-135.	0.3	21
129	South-to-north migration preceded the advent of intensive farming in the Maya region. Nature Communications, 2022, 13, 1530.	5.8	21
130	An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106743119.	3.3	21
131	Ancient DNA from the skeletons of Roopkund Lake reveals Mediterranean migrants in India. Nature Communications, 2019, 10, 3670.	5.8	19
132	Mitochondrial DNA analysis of eneolithic trypillians from Ukraine reveals neolithic farming genetic roots. PLoS ONE, 2017, 12, e0172952.	1.1	19
133	Indian genetic heritage in Southeast Asian populations. PLoS Genetics, 2022, 18, e1010036.	1.5	19
134	Failure to replicate a genetic signal for sex bias in the steppe migration into central Europe. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3873-E3874.	3.3	18
135	Discussion: Are the Origins of Indo-European Languages Explained by the Migration of the Yamnaya Culture to the West?. European Journal of Archaeology, 2018, 21, 3-17.	0.3	17
136	No statistical evidence for an effect of CCR5- $\hat{a}^{+}32$ on lifespan in the UK Biobank cohort. Nature Medicine, 2020, 26, 178-180.	15.2	16
137	The return of the Beaker folk? Rethinking migration and population change in British prehistory. Antiquity, 2021, 95, 1464-1477.	0.5	14
138	Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia. Nature Communications, 2021, 12, 7283.	5.8	13
139	Ancient DNA reveals five streams of migration into Micronesia and matrilocality in early Pacific seafarers. Science, 2022, 377, 72-79.	6.0	13
140	Genome-wide analysis of nearly all the victims of a 6200 year old massacre. PLoS ONE, 2021, 16, e0247332.	1.1	11
141	Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the Southern Cone of South America. IScience, 2021, 24, 102553.	1.9	11
142	African Ancestry Analysis and Admixture Genetic Mapping for Proliferative Diabetic Retinopathy in African Americans., 2015, 56, 3999.		10
143	Two genetic variants explain the association of European ancestry with multiple sclerosis risk in African-Americans. Scientific Reports, 2020, 10, 16902.	1.6	10
144	Increased rate of close-kin unions in the central Andes in the half millennium before European contact. Current Biology, 2020, 30, R980-R981.	1.8	9

#	Article	IF	CITATIONS
145	Genetic landscape of Gullah African Americans. American Journal of Physical Anthropology, 2021, 175, 905-919.	2.1	9
146	No evidence for unknown archaic ancestry in South Asia. Nature Genetics, 2018, 50, 632-633.	9.4	7
147	An ancient DNA Pacific journey: a case study of collaboration between archaeologists and geneticists. World Archaeology, 2019, 51, 620-639.	0.5	7
148	Combining ancient DNA and radiocarbon dating data to increase chronological accuracy. Journal of Archaeological Science, 2021, 133, 105452.	1.2	7
149	The Kalash Genetic Isolate? The Evidence for Recent Admixture. American Journal of Human Genetics, 2016, 98, 396-397.	2.6	6
150	Direct dating of human skeletal material from Ganj Dareh, Early Neolithic of the Iranian Zagros. Journal of Archaeological Science: Reports, 2017, 12, 165-172.	0.2	4
151	Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia. PLoS ONE, 2021, 16, e0244228.	1.1	4
152	Revisiting ancient DNA insights into the human history of the Pacific Islands. Archaeology in Oceania, 2019, 54, 53-56.	0.3	3
153	Ancestry and demography and descendants of Iron Age nomads of the Eurasian Steppe. , 0, .		1
154	A High-Density Admixture Scan in 1,670 African Americans with Hypertension. PLoS Genetics, 2005, preprint, e196.	1.5	0