Alok Mittal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763584/publications.pdf

Version: 2024-02-01

36303 95266 12,750 71 51 68 citations h-index g-index papers 73 73 73 9232 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A novel, eco-friendly bio-nanocomposite (Alg-Cst/Kal) for the adsorptive removal of crystal violet dye from its aqueous solutions. International Journal of Phytoremediation, 2022, 24, 796-807.	3.1	40
2	Synthesis and characterization of Egg shell (ES) and Egg shell with membrane (ESM) modified by ionic liquids. Chemical Data Collections, 2021, 33, 100717.	2.3	16
3	Efficient batch and Fixed-Bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. Arabian Journal of Chemistry, 2021, 14, 103186.	4.9	46
4	Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent. Journal of Cleaner Production, 2021, 321, 129060.	9.3	35
5	Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: Isotherm studies and RSM modelling approach. Ceramics International, 2020, 46, 10309-10319.	4.8	48
6	Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review. Journal of Environmental Management, 2020, 261, 110236.	7.8	152
7	A review on halloysite-based adsorbents to remove pollutants in water and wastewater. Journal of Molecular Liquids, 2018, 269, 855-868.	4.9	150
8	Anticancer Effects of Chemotherapy and Nature Products. Journal of Medical Discovery, 2017, 2, .	0.2	3
9	Screening of phytochemicals and bioactive compounds in punica granatum peel to evaluate its hematological potential. International Journal of Current Advanced Research, 2017, 6, 2524-2529.	0.0	2
10	Applications of egg shell and egg shell membrane as adsorbents: A review. Journal of Molecular Liquids, 2016, 223, 376-387.	4.9	210
11	Poly (methyl methacrylate)-grafted alginate/Fe ₃ O ₄ nanocomposite: synthesis and its application for the removal of heavy metal ions. Desalination and Water Treatment, 2016, 57, 19820-19833.	1.0	67
12	Fabrication of MWCNTs/ThO ₂ nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalination and Water Treatment, 2016, 57, 21863-21869.	1.0	192
13	Retrospection of Bhopal gas tragedy. Toxicological and Environmental Chemistry, 2016, 98, 1079-1083.	1.2	8
14	Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution. Desalination and Water Treatment, 2016, 57, 15133-15145.	1.0	60
15	Biosorption of Pb ²⁺ , Ni ²⁺ and Cu ²⁺ ions from aqueous solutions by L-cystein-modified montmorillonite-immobilized alginate nanocomposite. Desalination and Water Treatment, 2016, 57, 17790-17807.	1.0	65
16	Modification of <i>Hibiscus cannabinus </i> fiber by graft copolymerization: application for dye removal. Desalination and Water Treatment, 2015, 54, 3114-3121.	1.0	125
17	lon-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalination and Water Treatment, 2015, 54, 2883-2890.	1.0	194
18	Separation of chromium from water samples using eggshell powder as a low-cost sorbent: kinetic and thermodynamic studies. Desalination and Water Treatment, 2015, 53, 214-220.	1.0	106

#	Article	IF	CITATIONS
19	Utilization of bottom ash as a low-cost sorbent for the removal and recovery of a toxic halogen containing dye eosin yellow. Desalination and Water Treatment, 2014, 52, 4508-4519.	1.0	84
20	Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental & mp; theoretical approaches. Desalination and Water Treatment, 2014, 52, 1307-1315.	1.0	103
21	Process development for the removal of hazardous anionic azo dye Congo red from wastewater by using hen feather as potential adsorbent. Desalination and Water Treatment, 2014, 52, 227-237.	1.0	105
22	Batch removal of hazardous azo dye Bismark Brown R using waste material hen feather. Ecological Engineering, 2013, 60, 249-253.	3.6	101
23	Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste. Environmental Science and Pollution Research, 2013, 20, 4603-4611.	5.3	93
24	Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environmental Science and Pollution Research, 2013, 20, 260-269.	5.3	150
25	Adsorption of hazardous dye Eosin Yellow from aqueous solution onto waste material De-oiled Soya: Isotherm, kinetics and bulk removal. Journal of Molecular Liquids, 2013, 179, 133-140.	4.9	184
26	Batch and bulk removal of hazardous colouring agent Rose Bengal by adsorption techniques using bottom ash as adsorbent. RSC Advances, 2012, 2, 8381.	3.6	333
27	Evaluation of adsorption characteristics of an anionic azo dye Brilliant Yellow onto hen feathers in aqueous solutions. Environmental Science and Pollution Research, 2012, 19, 2438-2447.	5.3	89
28	Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Materials Science and Engineering C, 2012, 32, 12-17.	7.3	664
29	Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis. Journal of Hazardous Materials, 2010, 178, 390-396.	12.4	64
30	Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. Journal of Colloid and Interface Science, 2010, 342, 518-527.	9.4	463
31	Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 2010, 343, 463-473.	9.4	628
32	Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 2010, 344, 497-507.	9.4	805
33	Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicological and Environmental Chemistry, 2010, 92, 1813-1823.	1.2	91
34	Removal of Yellow ME 7 GL from industrial effluent using electrochemical and adsorption techniques. International Journal of Environment and Pollution, 2010, 43, 308.	0.2	61
35	Multi Class Classification Approach for Classification of ADAMs, MMPs and Their Subclasses. International Journal of Engineering and Technology, 2010, 2, 302-307.	0.2	1
36	Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. Journal of Hazardous Materials, 2009, 163, 568-577.	12.4	122

#	Article	IF	CITATIONS
37	Adsorption of carmoisine A from wastewater using waste materials—Bottom ash and deoiled soya. Journal of Colloid and Interface Science, 2009, 335, 24-33.	9.4	292
38	Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science, 2009, 337, 345-354.	9.4	467
39	Adsorptive removal of hazardous anionic dye "Congo red―from wastewater using waste materials and recovery by desorption. Journal of Colloid and Interface Science, 2009, 340, 16-26.	9.4	619
40	Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. Journal of Colloid and Interface Science, 2008, 319, 30-39.	9.4	256
41	Applicability of waste materials—bottom ash and deoiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green. Journal of Colloid and Interface Science, 2008, 326, 8-17.	9.4	117
42	Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. Journal of Hazardous Materials, 2008, 150, 364-375.	12.4	117
43	Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya). Journal of Hazardous Materials, 2008, 151, 821-832.	12.4	254
44	Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management, 2007, 85, 956-964.	7.8	567
45	Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 2007, 146, 243-248.	12.4	354
46	Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 2007, 148, 229-240.	12.4	435
47	Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. Journal of Colloid and Interface Science, 2007, 309, 464-469.	9.4	408
48	Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials:Â Bottom Ash and De-Oiled Soya. Industrial & Engineering Chemistry Research, 2006, 45, 1446-1453.	3.7	349
49	Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. Journal of Colloid and Interface Science, 2006, 293, 16-26.	9.4	243
50	Adsorption of Safranin-T from wastewater using waste materials— activated carbon and activated rice husks. Journal of Colloid and Interface Science, 2006, 303, 80-86.	9.4	281
51	Adsorption of a hazardous dye, erythrosine, over hen feathers. Journal of Colloid and Interface Science, 2006, 304, 52-57.	9.4	305
52	Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of Hazardous Materials, 2006, 133, 196-202.	12.4	288
53	Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials—Bottom Ash and De-Oiled Soya, as adsorbents. Journal of Hazardous Materials, 2006, 136, 567-578.	12.4	135
54	Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. Journal of Hazardous Materials, 2006, 137, 591-602.	12.4	130

#	Article	IF	Citations
55	Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials—Bottom Ash and De-Oiled Soya as adsorbents. Journal of Hazardous Materials, 2006, 138, 95-105.	12.4	80
56	Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater. Journal of Hazardous Materials, 2006, 128, 233-239.	12.4	115
57	Use of waste materialsâ€"Bottom Ash and De-Oiled Soya, as potential adsorbents for the removal of Amaranth from aqueous solutions. Journal of Hazardous Materials, 2005, 117, 171-178.	12.4	265
58	Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya. Separation and Purification Technology, 2005, 43, 125-133.	7.9	205
59	Adsorption and desorption studies of a water soluble dye, Quinoline Yellow, using waste materials. Journal of Colloid and Interface Science, 2005, 284, 89-98.	9.4	208
60	Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Separation and Purification Technology, 2004, 40, 87-96.	7.9	306
61	Transient charging and discharging current studies on unstretched and stretched polypropylene films. Journal of Materials Science Letters, 2001, 20, 681-685.	0.5	14
62	Title is missing!. Journal of Materials Science Letters, 2000, 19, 523-527.	0.5	3
63	Title is missing!. Journal of Materials Science Letters, 2000, 19, 1991-1994.	0.5	12
64	Simultaneous voltammetric determination of hypoxanthine, xanthine, and uric acid. Electroanalysis, 1994, 6, 609-611.	2.9	25
65	Electrochemical oxidation and kinetics of the decay of UV-absorbing intermediate of uric acid oxidation at pyrolytic graphite electrodes. Canadian Journal of Chemistry, 1994, 72, 1668-1674.	1.1	16
66	Oxidation chemistry of adenine and hydroxyadenines at pyrolytic graphite electrodes. Journal of the Chemical Society Perkin Transactions II, 1991, , 1369.	0.9	52
67	Electrochemical oxidation of sulphapyridine at a pyrolytic graphite electrode. Analytica Chimica Acta, 1990, 228, 273-278.	5.4	5
68	Voltammetric behaviour of 2-amino-5-methyl-1,3,4-thiadiazole at a pyrolytic graphite electrode. Journal of the Chemical Society Perkin Transactions II, 1990, , 1845.	0.9	2
69	Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome. , 0, 220, 342-352.		38
70	Adsorption of Cr(VI) and Cd(II) on chitosan grafted polyaniline-OMMT nanocomposite: isotherms, kinetics and thermodynamics studies., 0, 58, 144-153.		50
71	Investigation of adsorption performance of activated carbon prepared from waste tire for the removal of methylene blue dye from wastewater., 0, 90, 294-298.		41