## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576346/publications.pdf Version: 2024-02-01



WELCHEN

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.                                                                      | 5.4  | 17        |
| 2  | Additiveâ€Assisted Growth of Scaled and Quality 2D Materials. Small, 2022, 18, e2107241.                                                                                                                                            | 10.0 | 11        |
| 3  | One-step in-situ sprouting high-performance NiCoSxSey bifunctional catalysts for water electrolysis at low cell voltages and high current densities. Chemical Engineering Journal, 2022, 435, 134859.                               | 12.7 | 24        |
| 4  | Compositional and crystallographic design of Ni-Co phosphide heterointerfaced nanowires for<br>high-rate, stable hydrogen generation at industry-relevant electrolysis current densities. Nano<br>Energy, 2022, 95, 106989.         | 16.0 | 36        |
| 5  | Oxygen-Assisted Anisotropic Chemical Etching of MoSe <sub>2</sub> for Enhanced Phototransistors.<br>Chemistry of Materials, 2022, 34, 4212-4223.                                                                                    | 6.7  | 10        |
| 6  | Heterostructured Palladium–Nickel Sulfide on Plasma-Activated Nickel Foil for Robust Hydrogen<br>Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 8064-8074.                                                         | 6.7  | 7         |
| 7  | In-situ engineered heterostructured nickel tellur-selenide nanosheets for robust overall water splitting. Chemical Engineering Journal, 2022, 446, 137297.                                                                          | 12.7 | 22        |
| 8  | High-efficiency oxygen evolution catalyzed by Sn–Co–Ni phosphide with oriented crystal phases.<br>Journal of Materials Chemistry A, 2022, 10, 13448-13455.                                                                          | 10.3 | 15        |
| 9  | Fe–Ni–Co trimetallic oxide hierarchical nanospheres as high-performance bifunctional electrocatalysts for water electrolysis. New Journal of Chemistry, 2022, 46, 13296-13302.                                                      | 2.8  | 6         |
| 10 | High-performance CoNb phosphide water splitting electrocatalyst on plasma-defect-engineered carbon cloth. Chemical Engineering Journal, 2022, 446, 137419.                                                                          | 12.7 | 19        |
| 11 | Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient<br>electrocatalytic overall water splitting. Applied Catalysis B: Environmental, 2022, 316, 121678.                                     | 20.2 | 67        |
| 12 | Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high<br>current densities. Journal of Materials Chemistry A, 2021, 9, 9918-9926.                                                      | 10.3 | 47        |
| 13 | W-Doped MoP Nanospheres as Electrocatalysts for pH-Universal Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2021, 4, 5992-6001.                                                                                           | 5.0  | 28        |
| 14 | Trimetallic Octahedral Ni–Co–W Phosphoxide Sprouted from Plasma-Defect-Engineered Ni–Co<br>Support for Ultrahigh-Performance Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry<br>and Engineering, 2021, 9, 7454-7465. | 6.7  | 21        |
| 15 | A half-bridge IGBT drive and protection circuit in dielectric barrier discharge power supply. Circuit<br>World, 2021, ahead-of-print, .                                                                                             | 0.9  | 1         |
| 16 | Focused Plasma- and Pure Water-Enabled, Electrode-Emerged Nanointerfaced NiCo Hydroxide–Oxide<br>for Robust Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 45566-45577.                                     | 8.0  | 15        |
| 17 | Bi-metallic nitroxide nanodot-decorated tri-metallic sulphide nanosheets by on-electrode<br>plasma-hydrothermal sprouting for overall water splitting. Applied Catalysis B: Environmental, 2020,<br>261, 118254.                    | 20.2 | 72        |
| 18 | Plasma-heteroatom-doped Ni-V-Fe trimetallic phospho-nitride as high-performance bifunctional electrocatalyst. Applied Catalysis B: Environmental, 2020, 268, 118440.                                                                | 20.2 | 60        |

| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mulberryâ€Inspired Nickelâ€Niobium Phosphide on Plasmaâ€Defectâ€Engineered Carbon Support for<br>Highâ€Performance Hydrogen Evolution. Small, 2020, 16, e2004843.                                                                        | 10.0 | 30        |
| 20 | Water-sprouted, plasma-enhanced Ni-Co phospho-nitride nanosheets boost electrocatalytic hydrogen and oxygen evolution. Chemical Engineering Journal, 2020, 402, 126257.                                                                  | 12.7 | 60        |
| 21 | In-Situ-Engineered 3D Cu <sub>3</sub> Se <sub>2</sub> @CoSe <sub>2</sub> –NiSe <sub>2</sub><br>Nanostructures for Highly Efficient Electrocatalytic Water Splitting. ACS Sustainable Chemistry and<br>Engineering, 2020, 8, 17215-17224. | 6.7  | 30        |
| 22 | Just add water to split water: ultrahigh-performance bifunctional electrocatalysts fabricated using<br>eco-friendly heterointerfacing of NiCo diselenides. Journal of Materials Chemistry A, 2020, 8,<br>12035-12044.                    | 10.3 | 38        |
| 23 | Multiphase Ni-Fe-selenide nanosheets for highly-efficient and ultra-stable water electrolysis. Applied<br>Catalysis B: Environmental, 2020, 277, 119220.                                                                                 | 20.2 | 52        |
| 24 | Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable<br>catalyst for overall water splitting at large current density. Applied Catalysis B: Environmental, 2020,<br>278, 119327.          | 20.2 | 125       |
| 25 | Trimetallic Mo–Ni–Co selenides nanorod electrocatalysts for highly-efficient and ultra-stable<br>hydrogen evolution. Nano Energy, 2020, 71, 104637.                                                                                      | 16.0 | 100       |
| 26 | Wafer-scale and deterministic patterned growth of monolayer MoS <sub>2</sub> <i>via</i> viavapor–liquid–solid method. Nanoscale, 2019, 11, 16122-16129.                                                                                  | 5.6  | 76        |
| 27 | In situ engineering bi-metallic phospho-nitride bi-functional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2019, 254, 414-423.                                                                      | 20.2 | 107       |
| 28 | Boundary activated hydrogen evolution reaction on monolayer MoS2. Nature Communications, 2019, 10, 1348.                                                                                                                                 | 12.8 | 263       |
| 29 | Plasma-doping-enhanced overall water splitting: case study of NiCo hydroxide electrocatalyst.<br>Catalysis Today, 2019, 337, 147-154.                                                                                                    | 4.4  | 41        |
| 30 | Degradation of high-concentration simulated organic wastewater by DBD plasma. Water Science and<br>Technology, 2019, 80, 1413-1420.                                                                                                      | 2.5  | 8         |
| 31 | Holey Ni-Cu phosphide nanosheets as a highly efficient and stable electrocatalyst for hydrogen<br>evolution. Applied Catalysis B: Environmental, 2019, 243, 537-545.                                                                     | 20.2 | 128       |
| 32 | Hollow Ni–V–Mo Chalcogenide Nanopetals as Bifunctional Electrocatalyst for Overall Water<br>Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 1622-1632.                                                                    | 6.7  | 36        |
| 33 | Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water<br>Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.                                                           | 13.8 | 340       |
| 34 | Cross-linked trimetallic nanopetals for electrocatalytic water splitting. Journal of Power Sources, 2018, 390, 224-233.                                                                                                                  | 7.8  | 47        |
| 35 | Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet.<br>Chinese Physics B, 2018, 27, 055207.                                                                                            | 1.4  | 6         |
| 36 | Precisely Aligned Monolayer MoS <sub>2</sub> Epitaxially Grown on hâ€BN basal Plane. Small, 2017, 13, 1603005.                                                                                                                           | 10.0 | 91        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS <sub>2</sub> Continuous Films.<br>ACS Nano, 2017, 11, 12001-12007.                                                                            | 14.6 | 397       |
| 38 | Rolling Up a Monolayer MoS <sub>2</sub> Sheet. Small, 2016, 12, 3770-3774.                                                                                                                                     | 10.0 | 60        |
| 39 | Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Scientific Reports, 2016, 6, 35353.                                                                                                   | 3.3  | 17        |
| 40 | Observation of Strong Interlayer Coupling in MoS <sub>2</sub> /WS <sub>2</sub> Heterostructures.<br>Advanced Materials, 2016, 28, 1950-1956.                                                                   | 21.0 | 225       |
| 41 | Patterned Peeling 2D MoS <sub>2</sub> off the Substrate. ACS Applied Materials & Interfaces, 2016, 8, 16546-16550.                                                                                             | 8.0  | 30        |
| 42 | Integrated Flexible and Highâ€Quality Thin Film Transistors Based on Monolayer MoS <sub>2</sub> .<br>Advanced Electronic Materials, 2016, 2, 1500379.                                                          | 5.1  | 40        |
| 43 | Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy and Environmental Science, 2015, 8, 1719-1724.                                       | 30.8 | 167       |
| 44 | High-Index Faceted Ni <sub>3</sub> S <sub>2</sub> Nanosheet Arrays as Highly Active and Ultrastable<br>Electrocatalysts for Water Splitting. Journal of the American Chemical Society, 2015, 137, 14023-14026. | 13.7 | 1,622     |
| 45 | Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality<br>Monolayer MoS <sub>2</sub> . Journal of the American Chemical Society, 2015, 137, 15632-15635.                    | 13.7 | 301       |
| 46 | Scalable Growth of High-Quality Polycrystalline MoS <sub>2</sub> Monolayers on SiO <sub>2</sub> with Tunable Grain Sizes. ACS Nano, 2014, 8, 6024-6030.                                                        | 14.6 | 263       |
| 47 | Effect of pulsed bias on the properties of ZrN/TiZrN films deposited by a cathodic vacuum arc. Chinese Physics B, 2013, 22, 035204.                                                                            | 1.4  | 3         |
| 48 | A Temperature-Measurable Dielectric Barrier Discharge Plasma Cooperating with the Catalysis Device<br>for Nitric Oxides Removal. Advanced Materials Research, 2013, 718-720, 196-201.                          | 0.3  | 0         |
| 49 | Inactivation of Hela cancer cells by an atmospheric pressure cold plasma jet. Wuli Xuebao/Acta<br>Physica Sinica, 2013, 62, 065201.                                                                            | 0.5  | 5         |
| 50 | Deactivation of Enterococcus Faecalis Bacteria by an Atmospheric Cold Plasma Brush. Chinese Physics<br>Letters, 2012, 29, 075203.                                                                              | 3.3  | 8         |
| 51 | Treatment of <i>enterococcus faecalis</i> bacteria by a helium atmospheric cold plasma brush with oxygen addition. Journal of Applied Physics, 2012, 112, .                                                    | 2.5  | 47        |
| 52 | Characterization of Zr–Si–N films deposited by cathodic vacuum arc with different N2/SiH4 flow<br>rates. Applied Surface Science, 2012, 258, 3674-3678.                                                        | 6.1  | 8         |
| 53 | Inactivation of A549 cancer cells by a helium-oxygen plasma needle. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 185203.                                                                                         | 0.5  | 0         |
| 54 | Surface modification of polytetrafluoroethylene film using single liquid electrode atmospheric-pressure glow discharge. Chinese Physics B, 2011, 20, 065206.                                                   | 1.4  | 6         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle. Journal of<br>Applied Physics, 2011, 109, .                                                                                     | 2.5 | 38        |
| 56 | Dielectric barrier discharge plasma in Ar/O2 promoting apoptosis behavior in A549 cancer cells.<br>Applied Physics Letters, 2011, 99, .                                                                                     | 3.3 | 49        |
| 57 | Characteristics of NO <sub>x</sub> Removal Combining Dielectric Barrier Discharge Plasma with<br>Selective Catalytic Reduction by C <sub>3</sub> H <sub>6</sub> . Japanese Journal of Applied Physics,<br>2010, 49, 086201. | 1.5 | 11        |
| 58 | Characteristics of NOx removal combining dielectric barrier discharge plasma with selective catalytic reduction by C2H5OH. Journal of Applied Physics, 2009, 106, .                                                         | 2.5 | 12        |
| 59 | Treatment of <i>Streptococcus mutans</i> bacteria by a plasma needle. Journal of Applied Physics, 2009, 105, .                                                                                                              | 2.5 | 48        |
| 60 | Treatment of Enterococcus faecalis bacteria using a plasma needle at atmospheric pressure. Wuli<br>Xuebao/Acta Physica Sinica, 2009, 58, 1595.                                                                              | 0.5 | 8         |