Najim Tahiri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576328/publications.pdf

Version: 2024-02-01

		471061	500791
55	930	17	28
papers	citations	h-index	g-index
F.C.	5 6	5 .0	2.40
56	56	56	348
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Solar Energy, 2019, 193, 948-955.	2.9	218
2	Complexity of vesicle microcirculation. Physical Review E, 2011, 84, 041906.	0.8	58
3	On the problem of slipper shapes of red blood cells in the microvasculature. Microvascular Research, 2013, 85, 40-45.	1.1	42
4	A DFT study of the electronic structure, optical, and thermoelectric properties of halide perovskite KGel3-xBrx materials: photovoltaic applications. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	39
5	Electronic, optical, and thermoelectric properties of perovskite BaTiO3 compound under the effect of compressive strain. Chemical Physics, 2021, 544, 111105.	0.9	38
6	Importance of spinâ€orbit coupling on photovoltaic properties of Pbâ€free vacancy ordered double		

#	Article	IF	CITATIONS
19	A Monte Carlo study of the spin-1 Blume–Emery–Griffiths phase diagrams within biquadratic exchange anisotropy. Physica A: Statistical Mechanics and Its Applications, 2014, 407, 295-302.	1.2	17
20	Magnetic, magnetocaloric and transport properties in AlCMn3 antiperovskite compound. Journal of Alloys and Compounds, 2018, 741, 1196-1202.	2.8	16
21	How the strain effects decreases the band gap energy in the CsPbX ₃ perovskite compounds?. Phase Transitions, 2020, 93, 455-469.	0.6	15
22	Magnetocaloric and thermoelectric properties of the perovskite LaMnO ₃ material: A DFT study and Monte Carlo technique. Phase Transitions, 2021, 94, 826-834.	0.6	15
23	Multilayer transition in a spin-1 Blumeâ€"Capel model with RKKY interaction and quantum transverse anisotropy. Chinese Physics B, 2011, 20, 017501.	0.7	14
24	Magnetic Properties of NiFe2O4 Compound: Ab Initio Calculation and Monte Carlo Simulation. Journal of Superconductivity and Novel Magnetism, 2020, 33, 1369-1375.	0.8	14
25	Chalcogens' impurities and a single F-center in perovskite SrHfO3 compound: Ab initio calculations. Materials Science in Semiconductor Processing, 2022, 138, 106271.	1.9	14
26	A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 1067-1074.	1.2	12
27	Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi ₂₅ FeO ₄₀ compound. Phase Transitions, 2021, 94, 147-158.	0.6	11
28	Calcium hafnate perovskite from an insulator to a semiconductor for photovoltaic and photocatalytic hydrogen production from water splitting applications. Superlattices and Microstructures, 2021, 160, 107058.	1.4	11
29	Structural, electronic, magnetic, and magnetocaloric properties in intermetallic compound TbCu2Si2. Journal of Magnetism and Magnetic Materials, 2019, 481, 72-76.	1.0	10
30	Magnetocaloric effect in metallic antiperovskite Mn3InC compound: Ab-initio study and Monte Carlo simulations. Solid State Communications, 2020, 309, 113841.	0.9	10
31	Magnetic properties of a Dendrimer structure with RKKY interactions. Chinese Journal of Physics, 2016, 54, 115-120.	2.0	9
32	Physical properties of perovskite SrHfO3 compound doped with S for photovoltaic applications: the ab initio study. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	8
33	The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of perovskite BaSnO3 compound. Journal of the Korean Ceramic Society, 2022, 59, 715-728.	1.1	7
34	Theoretical investigations of electronic structure and optical properties of S, Se or Te doped perovskite ATiO3 (A=Ca, Ba, and Sr) materials for eco-friendly solar cells. Superlattices and Microstructures, 2022, 163, 107124.	1.4	6
35	Earth-abundant nontoxic ternary calcium nitrides inverse perovskites for single-junction solar cells: Ab-initio simulations. Materials Science in Semiconductor Processing, 2022, 150, 106959.	1.9	6
36	Ab Initio Study of Electronic and Magnetic Properties of Ga1-x Co \times N (Doped) and Ga1-x-y Co \times Cr y N (Co-doped). Journal of Superconductivity and Novel Magnetism, 2017, 30, 165-170.	0.8	5

#	Article	IF	Citations
37	Phase diagrams of spin ½ Ashkin–Teller model with Dzyaloshinskii–Moriya interaction. Journal of Magnetism and Magnetic Materials, 2015, 394, 27-31.	1.0	4
38	RKKY Interactions in a Bilayer Olympicene Structure: A Monte Carlo Study. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2793-2798.	0.8	4
39	Theoretical investigation of electronic and optical properties of the CuIn1-x GaxSe2: Ab initio calculation. Optik, 2020, 207, 163881.	1.4	4
40	Electronic and Magnetic Properties of ZnO Doped and Co-doped with (Co, Cr). Journal of Superconductivity and Novel Magnetism, 2016, 29, 3167-3173.	0.8	3
41	Superlattice Film with Ferromagnetic and Antiferromagnetic Layers Under the Effect of RKKY Interactions: a Monte Carlo Study. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1887-1892.	0.8	3
42	Phase diagrams of 2D Ashkin–Teller model within the effect of crystal field and quantum transverse field. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 2310-2315.	1.2	3
43	Electronic, transport and optical properties in perovskite compound LaGaO ₃ . Materials Research Express, 2020, 7, 035501.	0.8	3
44	Doping effect of iodine on electronic and optical properties of perovskite CsPbBr3 compound for photovoltaic applications: Ab initio calculations. Journal of Electron Spectroscopy and Related Phenomena, 2021, 247, 147043.	0.8	3
45	Magnetic properties of a tri-decorated graphene structure: Monte Carlo study. International Journal of Modern Physics B, 2016, 30, 1650233.	1.0	2
46	Theoretical investigation of physical properties of the spinel ZnFe ₂ O ₄ compound: Ab-initio calculation. Phase Transitions, 2021, 94, 134-146.	0.6	2
47	Magnetic properties and large magnetocaloric effect in the perovskite Mn ₃ GeC compound: Ab initio and Monte Carlo calculations. Phase Transitions, 2022, 95, 10-18.	0.6	2
48	Magnetic, magnetocaloric and thermoelectric properties of the intermetallic LaMn ₂ Si ₂ compound: a theoretical study. Phase Transitions, 2022, 95, 387-397.	0.6	2
49	Ferromagnetism and Anti-ferromagnetism in Nano-films with Alternate Crystal Fields: Monte Carlo Study. Journal of Superconductivity and Novel Magnetism, 2016, 29, 2829-2833.	0.8	1
50	Effect of anisotropic Dzyaloshinskii–Moriya interactions on phase diagrams of the Ashkin–Teller model. Physica A: Statistical Mechanics and Its Applications, 2016, 455, 92-97.	1.2	1
51	Ferrimagnetism in a Dendrimer Structure. Journal of Superconductivity and Novel Magnetism, 2016, 29, 375-381.	0.8	1
52	Ab Initio Study of Electronic and Magnetic Properties in ZnO-Doped and Co-doped by Vanadium and Silver. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2201-2206.	0.8	1
53	Strain effect on physical properties of the multiferroic Mn ₃ Sn material: a first-principles calculations. Philosophical Magazine, 2022, 102, 1305-1319.	0.7	1
54	Rheology of particulate suspensions in a Poiseuille flow. Physical Review E, 2010, 82, 026306.	0.8	0

#	Article	IF	CITATIONS
55	Magnetic properties of a Lie symmetry double square nanostructure: Monte Carlo study. Phase Transitions, 2016, 89, 1006-1018.	0.6	O