
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5763146/publications.pdf Version: 2024-02-01

IIIAN R AIMADEZ

#	Article	IF	CITATIONS
1	Wheat Quality. , 2022, , 177-193.		4
2	Potential Use of Wild Einkorn Wheat for Wheat Grain Quality Improvement: Evaluation and Characterization of Glu-1, Wx and Ha Loci. Agronomy, 2021, 11, 816.	3.0	3
3	Molecular characterization of five novel Wx-A1 alleles in common wheat including one silent allele by transposon insertion. Plant Science, 2021, 305, 110843.	3.6	3
4	Ancient wheats role in sustainable wheat cultivation. , 2021, , 29-66.		1
5	Spanish Spelt Wheat: From an Endangered Genetic Resource to a Trendy Crop. Plants, 2021, 10, 2748.	3.5	7
6	Chromosomal location and molecular characterization of three grain hardness genes in Agropyron cristatum. Euphytica, 2019, 215, 1.	1.2	4
7	Wx Gene in Hordeum chilense: Chromosomal Location and Characterisation of the Allelic Variation in the Two Main Ecotypes of the Species. Agronomy, 2019, 9, 261.	3.0	10
8	Recovery of Wheat Heritage for Traditional Food: Genetic Variation for High Molecular Weight Glutenin Subunits in Neglected/Underutilized Wheat. Agronomy, 2019, 9, 755.	3.0	11
9	Interspecific and intergeneric hybridization as a source of variation for wheat grain quality improvement. Theoretical and Applied Genetics, 2018, 131, 225-251.	3.6	40
10	Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/-i glutenin gene in 1A chromosome of three diploid Triticum species. Journal of Cereal Science, 2017, 74, 46-55.	3.7	7
11	Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). Journal of Cereal Science, 2016, 71, 61-65.	3.7	8
12	Molecular characterisation of novel LMW-m and LMW-s genes from four Aegilops species (Sitopsis) Tj ETQq0 0 (Science, 2016, 67, 938.	0 rgBT /Ov 1.5	erlock 10 Tf 5 2
13	Diversity of phenotypic (plant and grain morphological) and genotypic (glutenin alleles in Glu-1 and) Tj ETQq1 1 Resources and Crop Evolution, 2016, 63, 465-475.	0.784314 1.6	rgBT /Over o 11
14	Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. Theoretical and Applied Genetics, 2016, 129, 1-16.	3.6	87
15	Molecular characterization of two novel null waxy alleles in Mexican bread wheat landraces. Journal of Cereal Science, 2015, 62, 8-14.	3.7	20
16	Molecular characterization of novel LMW-i glutenin subunit genes from Triticum urartu Thum. ex Gandil Theoretical and Applied Genetics, 2015, 128, 2155-2165.	3.6	19
17	Diversification of the celiac disease αâ€gliadin complex in wheat: a 33â€mer peptide with six overlapping epitopes, evolved following polyploidization. Plant Journal, 2015, 82, 794-805.	5.7	72
18	Molecular characterization of several Wx alleles in durum wheat. Biologia Plantarum, 2015, 59, 220-226.	1.9	4

#	Article	IF	CITATIONS
19	Characterization and sequence diversity of the Gsp-1 gene in diploid species of the Aegilops genus. Journal of Cereal Science, 2015, 63, 1-7.	3.7	2
20	Molecular characterization of waxy alleles in three subspecies of hexaploid wheat and identification of two novel Wx-B1 alleles. Theoretical and Applied Genetics, 2015, 128, 2427-2435.	3.6	17
21	Cereals Taxonomy: The Role of Domestication and Breeding on Gluten Intolerance. , 2015, , 193-526.		0
22	Molecular characterization of two novel alleles of Hordoindoline genes in Hordeum chilense Roem. et Schult Genetic Resources and Crop Evolution, 2014, 61, 307-312.	1.6	6
23	Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding. Genetic Resources and Crop Evolution, 2014, 61, 369-382.	1.6	19
24	Wx gene in diploid wheat: molecular characterization of five novel alleles from einkorn (Triticum) Tj ETQq0 0 0 r	gBT_/Overl 2.1	ock 10 Tf 50 !
25	Molecular characterisation of the amino- and carboxyl-domains in different Glu-A1x alleles of Triticum urartu Thum. ex Gandil Theoretical and Applied Genetics, 2013, 126, 1703-1711.	3.6	8
26	Allelic diversity and molecular characterization of puroindoline genes in five diploid species of the Aegilops genus. Journal of Experimental Botany, 2013, 64, 5133-5143.	4.8	14
27	Identification and characterization by PCR–RFLP analysis of the genetic variation for the Glu-A1x and Glu-B1x genes in rivet wheat (Triticum turgidum L. ssp. turgidum). Journal of Cereal Science, 2013, 57, 253-257.	3.7	3
28	Characterization of genetic diversity of puroindoline genes in Mexican wheat landraces. Euphytica, 2013, 190, 53-63.	1.2	25
29	COMPOSICIÓN, ESTRUCTURA Y DIVERSIDAD DE POBLACIONES DE NOTHOFAGUS GLAUCA UBICADAS EN LA ZONA MEDITERRANEA DE CHILE. Gayana - Botanica, 2013, 70, 82-91.	0.2	2
30	Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species. Annals of Botany, 2012, 110, 1161-1171.	2.9	36
31	Molecular characterization of a novel waxy allele (Wx-A u 1a) from Triticum urartu Thum. ex Gandil Genetic Resources and Crop Evolution, 2012, 59, 971-979.	1.6	24
32	Landscape genetic structure of chestnut (Castanea sativa Mill.) in Spain. Tree Genetics and Genomes, 2012, 8, 127-136.	1.6	50
33	Molecular characterization and diversity of the Pina and Pinb genes in cultivated and wild diploid wheat. Molecular Breeding, 2012, 30, 69-78.	2.1	22
34	Molecular characterization of a new waxy allele with partial expression in spelt wheat. Planta, 2012, 235, 1331-1339.	3.2	20
35	Inheritance of cotyledon storage proteins in European sweet chestnut (Castanea sativa Miller). Forest Systems, 2012, 21, 64.	0.3	1
36	Short communication: Development of a new polymorphic genetic marker in Araucaria araucana (Mol) K. Koch. Spanish Journal of Agricultural Research, 2012, 10, 160.	0.6	0

#	Article	IF	CITATIONS
37	CHESTNUT GENETIC LANDSCAPE SHAPE IN SPAIN. Acta Horticulturae, 2011, , 843-847.	0.2	0
38	Sub-arm location of prolamin and EST-SSR loci on chromosome 1Hch from Hordeum chilense. Euphytica, 2011, 178, 63-69.	1.2	14
39	Molecular characterisation of the Wx-B1 allelic variants identified in cultivated emmer wheat and comparison with those of durum wheat. Molecular Breeding, 2011, 28, 403-411.	2.1	26
40	Amylose content and starch properties in emmer and durum wheat lines with different waxy proteins composition. Journal of the Science of Food and Agriculture, 2011, 91, 1625-1629.	3.5	10
41	Molecular characterization of the <i>Glu-Ay</i> gene from <i>Triticum urartu</i> for its potential use in quality wheat breeding. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 334-337.	0.8	9
42	Polymorphism of waxy proteins in Spanish hulled wheats. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 330-333.	0.8	2
43	Genetic diversity in khorasan and rivet wheat by assessment of morphological traits and seed storage proteins. Crop and Pasture Science, 2010, 61, 938.	1.5	3
44	Genetic diversity of Spanish fir (Abies pinsapo Boiss.) populations by means of megagametophyte storage proteins. Annals of Forest Science, 2010, 67, 603-603.	2.0	6
45	Genetic diversity for morphological traits and seed storage proteins in Spanish rivet wheat. Biologia Plantarum, 2010, 54, 69-75.	1.9	17
46	Characterization of Mexican Creole wheat landraces in relation to morphological characteristics and HMW glutenin subunit composition. Genetic Resources and Crop Evolution, 2010, 57, 657-665.	1.6	12
47	Genetic variation for waxy proteins and amylose content in Spanish spelt wheat (Triticum spelta L.). Genetic Resources and Crop Evolution, 2010, 57, 721-725.	1.6	16
48	Gene effects for spike length, spikelets per spike and spike density in <i>Hordeum chilense</i> . Cereal Research Communications, 2010, 38, 266-271.	1.6	0
49	Primeros resultados en el desarrollo de un marcador genético basado en las proteÃnas de reserva en dos especies del género Nothofagus. Bosque, 2010, 31, 252-257.	0.3	1
50	TRADITIONAL CHESTNUT CULTIVARS IN SOUTHERN SPAIN: A CASE OF ENDANGERED GENETIC RESOURCES. Acta Horticulturae, 2010, , 143-149.	0.2	2
51	The use of cotyledon proteins to assess the genetic diversity in sweet holm oak. Journal of Forest Science, 2009, 55, 526-531.	1.1	7
52	Association between the HMW-glutenin subunits and gluten strength characteristics in khorassan wheat lines - Short Communications. Czech Journal of Genetics and Plant Breeding, 2009, 45, 169-172.	0.8	1
53	Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. Genetic Resources and Crop Evolution, 2009, 56, 601-604.	1.6	21
54	Genetic diversity for seed storage proteins in Lebanon and Turkey populations of wild diploid wheat (Triticum urartu Thum. ex Gandil.). Genetic Resources and Crop Evolution, 2009, 56, 1117-1124.	1.6	10

JUAN B ALVAREZ

#	Article	IF	CITATIONS
55	Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeat (SSRs) markers. Annals of Applied Biology, 2009, 154, 389-398.	2.5	32
56	Development and gluten strength evaluation of introgression lines of <i>Triticum urartu</i> in durum wheat. Cereal Research Communications, 2009, 37, 243-248.	1.6	26
57	Polymorphisms at the Cli-A u 1 and Cli-A u 2 loci in wild diploid wheat (Triticum urartu). Euphytica, 2008, 163, 303-307.	1.2	12
58	Genetic diversity in Spanish populations of Triticum spelta L. (escanda): example of an endangered genetic resource. Genetic Resources and Crop Evolution, 2008, 55, 675-682.	1.6	7
59	Tritordeum: a new crop of potential importance in the food industry. Hereditas, 2008, 116, 193-197.	1.4	16
60	Silencing of Î ³ -gliadins by RNA interference (RNAi) in bread wheat. Journal of Cereal Science, 2008, 48, 565-568.	3.7	90
61	Allelic variation for the high- and low-molecular-weight glutenin subunits in wild diploid wheat (Triticum urartu) and its comparison with durum wheats. Australian Journal of Agricultural Research, 2008, 59, 906.	1.5	17
62	Relationships between the HMW- and LMW-glutenin subunits and SDS-sedimentation volume in Spanish hulled wheat lines. Czech Journal of Genetics and Plant Breeding, 2008, 44, 114-117.	0.8	8
63	Variation of high molecular weight glutenin subunits in two neglected tetraploid wheat subspecies. Czech Journal of Genetics and Plant Breeding, 2008, 44, 140-146.	0.8	6
64	NUT CHARACTERISATION OF THE MAIN TRADITIONAL CHESTNUT VARIETIES FROM ANDALUSIA. Acta Horticulturae, 2008, , 71-76.	0.2	0
65	Variability for morphological traits and high molecular weight glutenin subunits in Spanish spelt lines. Plant Genetic Resources: Characterisation and Utilisation, 2007, 5, 128-130.	0.8	5
66	Characterisation and Variation of Morphological Traits and Storage Proteins in Spanish Emmer Wheat Germplasm (Triticum Dicoccon). Genetic Resources and Crop Evolution, 2007, 54, 241-248.	1.6	13
67	Agrobiodiversity of Hulled Wheats in Asturias (North of Spain). Genetic Resources and Crop Evolution, 2007, 54, 267-277.	1.6	16
68	The Genetic Resources of European Sweet Chestnut (Castanea sativa Miller) in Andalusia, Spain. Genetic Resources and Crop Evolution, 2007, 54, 379-387.	1.6	16
69	Polymorphism and Genetic Diversity for the Seed Storage Proteins in Spanish Cultivated Einkorn Wheat (Triticum monococcum L. ssp. monococcum). Genetic Resources and Crop Evolution, 2006, 53, 1061-1067.	1.6	26
70	Variability and Genetic Diversity for Gliadins in Natural Populations of Hordeum Chilense Roem. et Schult Genetic Resources and Crop Evolution, 2006, 53, 1419-1425.	1.6	12
71	Genetic diversity and structure in a natural Hordeum chilense population based on gliadin analysis. Plant Systematics and Evolution, 2006, 261, 11-18.	0.9	2
72	Intra- and interpopulation diversity for HMW glutenin subunits in Spanish spelt wheat. Genetic Resources and Crop Evolution, 2004, 51, 175-181.	1.6	20

#	Article	IF	CITATIONS
73	Use of megagametophyte storage proteins as markers of the genetic diversity in stone pine (Pinus pinea) Tj ETQq	1 1 0.784	314 rgBT /O
74	Variation and genetic diversity for gliadins in Spanish spelt wheat accessions. Genetic Resources and Crop Evolution, 2004, 51, 679-686.	1.6	32
75	Linkage relationships between prolamin genes located on chromosome 1Hch in Hordeum chilense. Theoretical and Applied Genetics, 2004, 108, 891-895.	3.6	8
76	Genetic variability of the low-molecular-weight glutenin subunits in spelt wheat (Triticum aestivum) Tj ETQq0 0 0	rgBT /Over 3.6	lock 10 Tf 5
77	Introgression of 1Dx5+1Dy10 into Tritordeum. Theoretical and Applied Genetics, 2003, 106, 644-648.	3.6	6
78	Cotyledon storage proteins as markers of the genetic diversity in Castanea sativa Miller. Theoretical and Applied Genetics, 2003, 107, 730-735.	3.6	11
79	Variation for the low-molecular-weight glutenin subunits in a collection of Hordeum chilense. Euphytica, 2002, 128, 269-277.	1.2	25
80	Variation in the high-molecular-weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense. Theoretical and Applied Genetics, 2001, 102, 134-137.	3.6	44
81	Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum) Tj ETQq1	1 9.78431	4 ₅ gBT /Over
82	Allelic variation of the HMW glutenin subunits in Spanish accessions of spelt wheat (Triticum) Tj ETQq0 0 0 rgBT /	Overlock 3.6	10 Tf 50 382 41
83	Analysis of D-prolamins synthesized by the Hordeum chilense genome and their effects on gluten strength in hexaploid tritordeum. Plant Breeding, 2001, 120, 185-187.	1.9	5
84	Influence of HMW and LMW glutenin subunits on gluten strength in hexaploid tritordeum. Plant Breeding, 1999, 118, 456-458.	1.9	8
85	Genetic variation for carotenoid pigment content in the amphiploid <i>Hordeum chilense × Triticum turgidum</i> conv. <i>durum</i> . Plant Breeding, 1999, 118, 187-189.	1.9	37
86	The Development of Tritordeum: A Novel Cereal for Food Processing. Journal of Cereal Science, 1999, 30, 85-95.	3.7	132
87	Title is missing!. Euphytica, 1999, 107, 177-184.	1.2	19
88	Allelic variation of the D-prolamin subunits encoded at the Hch genome in a collection of primary hexaploid tritordeums. Theoretical and Applied Genetics, 1999, 99, 296-299.	3.6	12
89	Chromosomal localization of genes for carotenoid pigments using addition lines of Hordeum chilense in wheat. Plant Breeding, 1998, 117, 287-289.	1.9	35
90	Differential effects of the endosperm protein fractions from tritordeum on the SDS-sedimentation volume. Cereal Research Communications, 1997, 25, 141-147.	1.6	2

#	Article	IF	CITATIONS
91	Breadmaking Quality in Tritordeum: The Use-Possibilities of a New Cereal. Developments in Plant Breeding, 1996, , 799-805.	0.2	7
92	The Rheological Properties and Baking Performances of Flours from Hexaploid Tritordeums. Journal of Cereal Science, 1995, 21, 291-299.	3.7	20
93	Genealogical Identification of Hexaploid Tritordeum by Electrophoretic Separation of Endosperm Storage Proteins. Plant Breeding, 1993, 111, 166-169.	1.9	16
94	Tritordeum: a new crop of potential importance in the food industry. Hereditas, 0, 116, 193-197.	1.4	37