Till Luckenbach

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/576313/till-luckenbach-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,385 56 48 23 h-index g-index citations papers 62 2,661 4.72 5.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
56	Chemical Pollution Levels in a River Explain Site-Specific Sensitivities to Micropollutants within a Genetically Homogeneous Population of Freshwater Amphipods. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 6087-6096	10.3	2
55	Low annual temperature likely prevents the Holarctic amphipod Gammarus lacustris from invading Lake Baikal. <i>Scientific Reports</i> , 2021 , 11, 10532	4.9	1
54	Proteomics reveals sex-specific heat shock response of Baikal amphipod Eulimnogammarus cyaneus. <i>Science of the Total Environment</i> , 2021 , 763, 143008	10.2	O
53	Chemical effects on dye efflux activity in live zebrafish embryos and on zebrafish Abcb4 ATPase activity. <i>FEBS Letters</i> , 2021 , 595, 828-843	3.8	8
52	Thermal reaction norms of key metabolic enzymes reflect divergent physiological and behavioral adaptations of closely related amphipod species. <i>Scientific Reports</i> , 2021 , 11, 4562	4.9	4
51	Different ways to play it cool: Transcriptomic analysis sheds light on different activity patterns of three amphipod species under long-term cold exposure. <i>Molecular Ecology</i> , 2021 , 30, 5735-5751	5.7	О
50	Yolk Sac of Zebrafish Embryos as Backpack for Chemicals?. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 10159-10169	10.3	15
49	Changes of cellular stress response related and transcript and Hsp70 protein levels in Siberian freshwater amphipods upon exposure to cadmium chloride in the lethal concentration range. <i>PeerJ</i> , 2020 , 8, e8635	3.1	2
48	Transcriptome-level effects of the model organic pollutant phenanthrene and its solvent acetone in three amphipod species. <i>Comparative Biochemistry and Physiology Part D: Genomics and Proteomics</i> , 2020 , 33, 100630	2	1
47	Comparison between transcriptomic responses to short-term stress exposures of a common Holarctic and endemic Lake Baikal amphipods. <i>BMC Genomics</i> , 2019 , 20, 712	4.5	10
46	Isolation and characterization of eleven novel microsatellite markers for fine-scale population genetic analyses of Gammarus pulex (Crustacea: Amphipoda). <i>Molecular Biology Reports</i> , 2019 , 46, 6609	- 66 15	2
45	Description of strongly heat-inducible heat shock protein 70 transcripts from Baikal endemic amphipods. <i>Scientific Reports</i> , 2019 , 9, 8907	4.9	7
44	Indication of ongoing amphipod speciation in Lake Baikal by genetic structures within endemic species. <i>BMC Evolutionary Biology</i> , 2019 , 19, 138	3	4
43	Elemental imaging (LA-ICP-MS) of zebrafish embryos to study the toxicokinetics of the acetylcholinesterase inhibitor naled. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 617-627	4.4	12
42	Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos. <i>PLoS ONE</i> , 2018 , 13, e0190779	3.7	14
41	Uptake Kinetics and Subcellular Compartmentalization Explain Lethal but Not Sublethal Effects of Cadmium in Two Closely Related Amphipod Species. <i>Environmental Science & Environmental Science & Env</i>	10.3	8
40	From the exposome to mechanistic understanding of chemical-induced adverse effects. <i>Environment International</i> , 2017 , 99, 97-106	12.9	113

(2013-2017)

39	The impact of chemosensitisation on bioaccumulation and sediment toxicity. <i>Chemosphere</i> , 2017 , 186, 652-659	8.4	5
38	Effects of pharmaceuticals and personal care products (PPCPs) on multixenobiotic resistance (MXR) related efflux transporter activity in zebrafish (Danio rerio) embryos. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 136, 14-23	7	21
37	Assessing the bioaccumulation potential of ionizable organic compounds: Current knowledge and research priorities. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 882-897	3.8	68
36	Does perfluorooctane sulfonate (PFOS) act as chemosensitizer in zebrafish embryos?. <i>Science of the Total Environment</i> , 2016 , 548-549, 317-324	10.2	20
35	Thermal Preference Ranges Correlate with Stable Signals of Universal Stress Markers in Lake Baikal Endemic and Holarctic Amphipods. <i>PLoS ONE</i> , 2016 , 11, e0164226	3.7	18
34	Lake Baikal amphipods under climate change: thermal©onstraints@and ecological consequences. <i>Ecosphere</i> , 2016 , 7, e01308	3.1	34
33	Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue. <i>Toxicology and Applied Pharmacology</i> , 2016 , 297, 56-67	4.6	9
32	Is chemosensitisation by environmental pollutants ecotoxicologically relevant?. <i>Aquatic Toxicology</i> , 2015 , 167, 134-42	5.1	12
31	Identification of a putatively multixenobiotic resistance related Abcb1 transporter in amphipod species endemic to the highly pristine Lake Baikal. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 5453-68	5.1	4
30	Body Mass Parameters, Lipid Profiles and Protein Contents of Zebrafish Embryos and Effects of 2,4-Dinitrophenol Exposure. <i>PLoS ONE</i> , 2015 , 10, e0134755	3.7	39
29	A first glimpse at the genome of the Baikalian amphipod Eulimnogammarus verrucosus. <i>Journal of Experimental Zoology Part B: Molecular and Developmental Evolution</i> , 2014 , 322, 177-89	1.8	18
28	Current advances on ABC drug transporters in fish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014 , 165, 28-52	3.2	69
27	On Eulimnogammarus messerschmidtii, sp. n. (Amphipoda: Gammaridea) from Lake Baikal, Siberia, with redescription of E. cyanoides (Sowinsky) and remarks on taxonomy of the genus Eulimnogammarus. <i>Zootaxa</i> , 2014 , 3838, 518-44	0.5	10
26	Contrasting cellular stress responses of Baikalian and Palearctic amphipods upon exposure to humic substances: environmental implications. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 14124-37	5.1	13
25	First evidence for toxic defense based on the multixenobiotic resistance (MXR) mechanism in Daphnia magna. <i>Aquatic Toxicology</i> , 2014 , 148, 139-51	5.1	37
24	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. <i>Regulatory Toxicology and Pharmacology</i> , 2013 , 67, 506-30	3.4	121
23	Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. <i>BMC Biology</i> , 2013 , 11, 69	7.3	114
22	Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal. <i>Molecular Ecology</i> , 2013 , 22, 1416-30	5.7	62

21	Abcb and Abcc transporter homologs are expressed and active in larvae and adults of zebra mussel and induced by chemical stress. <i>Aquatic Toxicology</i> , 2012 , 122-123, 144-52	5.1	38
20	Characterization of the multixenobiotic resistance (MXR) mechanism in embryos and larvae of the zebra mussel (Dreissena polymorpha) and studies on its role in tolerance to single and mixture combinations of toxicants. <i>Aquatic Toxicology</i> , 2011 , 101, 78-87	5.1	65
19	Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss). <i>Aquatic Toxicology</i> , 2011 , 101, 438-46	5.1	53
18	Identification of multi-drug resistance associated proteins MRP1 (ABCC1) and MRP3 (ABCC3) from rainbow trout (Oncorhynchus mykiss). <i>Marine Environmental Research</i> , 2010 , 69 Suppl, S7-S10	3.3	11
17	Identification of five partial ABC genes in the liver of the Antarctic fish Trematomus bernacchii and sensitivity of ABCB1 and ABCC2 to Cd exposure. <i>Environmental Pollution</i> , 2010 , 158, 2746-56	9.3	34
16	Teasing apart activities of different types of ABC efflux pumps in bivalve gills using the concepts of independent action and concentration addition. <i>Marine Environmental Research</i> , 2008 , 66, 75-6	3.3	17
15	Efflux transporters: newly appreciated roles in protection against pollutants. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental & Envir	10.3	133
14	ABCB- and ABCC-type transporters confer multixenobiotic resistance and form an environment-tissue barrier in bivalve gills. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2008 , 294, R1919-29	3.2	71
13	The zebrafish embryo model in environmental risk assessmentapplications beyond acute toxicity testing. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 394-404	5.1	393
12	New perspectives on perfluorochemical ecotoxicology: inhibition and induction of an efflux transporter in the marine mussel, Mytilus californianus. <i>Environmental Science & amp; Technology</i> , 2006 , 40, 5580-5	10.3	55
11	Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. <i>Journal of Thermal Biology</i> , 2005 , 30, 7-17	2.9	169
10	Synthetic Musk Compounds: Luckenbach Responds. <i>Environmental Health Perspectives</i> , 2005 , 113,	8.4	4
9	Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters. <i>Environmental Health Perspectives</i> , 2005 , 113, 17-24	8.4	165
8	Emerging contaminantspesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2004 , 552, 101-17	3.3	149
7	Fatal attraction: synthetic musk fragrances compromise multixenobiotic defense systems in mussels. <i>Marine Environmental Research</i> , 2004 , 58, 215-9	3.3	49
6	Assessment of the developmental success of brown trout (Salmo trutta f. fario L.) embryos in two differently polluted streams in Germany. <i>Hydrobiologia</i> , 2003 , 490, 53-62	2.4	3
5	Developmental and subcellular effects of chronic exposure to sub-lethal concentrations of ammonia, PAH and PCP mixtures in brown trout (Salmo trutta f. fario L.) early life stages. <i>Aquatic Toxicology</i> , 2003 , 65, 39-54	5.1	18
4	Establishing Causality between Pollution and Effects at Different Levels of Biological Organization: The VALIMAR Project. <i>Human and Ecological Risk Assessment (HERA)</i> , 2003 , 9, 171-194	4.9	21

LIST OF PUBLICATIONS

3	2001 , 8, 355-370		31
2	Toxicity of waters from two streams to early life stages of brown trout (Salmo trutta f. fario L.), tested under semi-field conditions. <i>Chemosphere</i> , 2001 , 45, 571-9	8.4	26
1	Investigation of cellular stress response related heat shock protein hsp70/Hsp70 and multixenobiotic transporter abcb1 in Siberian freshwater amphipods upon cadmium exposure		1