
Antonio Paolo Carlucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5762843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental investigation and combustion analysis of a direct injection dual-fuel diesel–natural gas engine. Energy, 2008, 33, 256-263.	8.8	187
2	Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. Fuel, 2017, 202, 699-716.	6.4	114
3	Analysis of the relation between injection parameter variation and block vibration of an internal combustion diesel engine. Journal of Sound and Vibration, 2006, 295, 141-164.	3.9	93
4	Extension of portfolio theory application to energy planning problem – The Italian case. Energy, 2012, 39, 112-124.	8.8	69
5	Combustion and emissions control in diesel–methane dual fuel engines: The effects of methane supply method combined with variable in-cylinder charge bulk motion. Energy Conversion and Management, 2011, 52, 3004-3017.	9.2	63
6	Effects of Pilot Injection Parameters on Combustion for Common Rail Diesel Engines. , 0, , .		56
7	Supercharging system behavior for high altitude operation of an aircraft 2-stroke Diesel engine. Energy Conversion and Management, 2015, 101, 470-480.	9.2	52
8	Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals. Energy Conversion and Management, 2014, 77, 193-207.	9.2	51
9	Control of the combustion behaviour in a diesel engine using early injection and gas addition. Applied Thermal Engineering, 2006, 26, 2279-2286.	6.0	45
10	Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation. Energy, 2019, 187, 115970.	8.8	44
11	Effects on combustion and emissions of early and pilot fuel injections in diesel engines. International Journal of Engine Research, 2005, 6, 43-60.	2.3	43
12	Improvement of dual-fuel biodiesel-producer gas engine performance acting on biodiesel injection parameters and strategy. Fuel, 2017, 209, 754-768.	6.4	32
13	Artificial Neural Network Modeling and Sensitivity Analysis of Performance and Emissions in a Compression Ignition Engine Using Biodiesel Fuel. Energies, 2018, 11, 2410.	3.1	32
14	Performance optimization of a Two-Stroke supercharged diesel engine for aircraft propulsion. Energy Conversion and Management, 2016, 122, 279-289.	9.2	28
15	Comparative evaluation of physical and chemical properties, emission and combustion characteristics of brassica, cardoon and coffee based biodiesels as fuel in a compression-ignition engine. Fuel, 2018, 222, 156-174.	6.4	28
16	A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine. Energy, 2020, 194, 116860.	8.8	24
17	Block Vibration as a Way of Monitoring the Combustion Evolution in a Direct Injection Diesel Engine. , 0, , .		22
18	Study of Combustion Development in Methane-Diesel Dual Fuel Engines, Based on the Analysis of		19

In-Cylinder Luminance. , 2010, , .

19

#	Article	IF	CITATIONS
19	Improvements in Dual-Fuel Biodiesel-Producer Gas Combustion at Low Loads through Pilot Injection Splitting. Journal of Energy Engineering - ASCE, 2015, 141, .	1.9	19
20	Study of the Influence of the Injection Parameters on Combustion Noise in a Common Rail Diesel Engine Using ANOVA and Neural Networks. , 0, , .		16
21	Potentialities of a Common Rail Injection System for the Control of Dual Fuel Biodiesel-Producer Gas Combustion and Emissions. Journal of Energy Engineering - ASCE, 2014, 140, .	1.9	16
22	Engine performance, exhaust emission and combustion analysis of a 4-stroke spark ignited engine using dual fuel injection. Fuel, 2017, 207, 719-728.	6.4	16
23	Experimental investigation of the possibility of automotive gasoline spray manipulation through electrostatic fields. International Journal of Vehicle Design, 2007, 45, 61.	0.3	14
24	Synopsis of experimentally determined effects of electrostatic charge on gasoline sprays. Energy Conversion and Management, 2007, 48, 2762-2768.	9.2	14
25	Light-Induced ignition of Carbon Nanotubes and energetic nano-materials: a review on methods and advanced technical solutions for nanoparticles-enriched fuels combustion. Reviews on Advanced Materials Science, 2020, 59, 26-46.	3.3	14
26	ELECTROSTATIC EFFECTS ON GASOLINE DIRECT INJECTION IN ATMOSPHERIC AMBIANCE. , 2007, 17, 289-313.		14
27	Effects of in-Cylinder Bulk Flow and Methane Supply Strategies on Charge Stratification, Combustion and Emissions of a Dual-Fuel DI Diesel Engine. , 0, , .		13
28	Multiwalled Carbon Nanotubes (MWCNTs) as Ignition Agents for Air/Methane Mixtures. IEEE Nanotechnology Magazine, 2016, 15, 699-704.	2.0	13
29	Photo-Induced Ignition of Different Gaseous Fuels Using Carbon Nanotubes Mixed with Metal Nanoparticles as Ignitor Agents. Combustion Science and Technology, 2017, 189, 937-953.	2.3	12
30	Sizing and Simulation of a Piston-prop UAV. Energy Procedia, 2015, 82, 119-124.	1.8	11
31	Investigating the impact of copper leaching on combustion characteristics and particulate emissions in HPCR diesel engines. Fuel, 2020, 263, 116719.	6.4	11
32	New technologies demonstrated at Formula Electric and Hybrid Italy 2008. World Electric Vehicle Journal, 2009, 3, 160-171.	3.0	10
33	Morphological analysis of injected sprays of different bio-diesel fuels by using a common rail setup controlled by a programmable electronic system. International Journal of Automotive and Mechanical Engineering, 2017, 14, 3849-3871.	0.9	10
34	Multi-Walled Carbon Nanotubes (MWCNTs) bonded with Ferrocene particles as ignition agents for air-fuel mixtures. Fuel, 2017, 208, 734-745.	6.4	7
35	Photo-induced ignition phenomenon of carbon nanotubes by Xenon pulsed light: Ignition tests analysis, automotive and new potential applications, future developments. Journal of Applied Research and Technology, 2017, 15, 609-623.	0.9	7

A Combined Optimization Method for Common Rail Diesel Engines. , 2002, , 243.

6

#	Article	IF	CITATIONS
37	Experimental Validation of a CFD Model and an Optimization Procedure for Dual Fuel Engines. , 0, , .		6
38	Multiobjective Optimization of the Breathing System of an Aircraft two Stroke Supercharged Diesel Engine. Energy Procedia, 2015, 82, 31-37.	1.8	6
39	Dual-fuel injection fundamentals: experimental – numerical analysis into a constant-volume vessel. Energy Procedia, 2018, 148, 18-25.	1.8	6
40	Improved Photo-Ignition of Carbon Nanotubes/Ferrocene Using a Lipophilic Porphyrin under White Power LED Irradiation. Materials, 2018, 11, 127.	2.9	6
41	Available Energy in Cars' Exhaust System for IoT Remote Exhaust Gas Sensor and Piezoelectric Harvesting. Energies, 2020, 13, 4169.	3.1	5
42	Preliminary Studies on the Effects of Injection Rate Modulation on the Combustion Noise of a Common Rail Diesel Engine. , 2004, , .		4
43	Application of a gas sensors array to the detection of fuel as contamination defect in engine oil. , 2008, , .		4
44	Benefits of Enabling Technologies for the ICE and Sharing Strategies in a CHP System for Residential Applications. Journal of Energy Engineering - ASCE, 2017, 143, 04017007.	1.9	4
45	Experimental Characterization of Diesel Fuel Pulsed Sprays. , 2007, , .		3
46	Combustion Development and Exhaust Emissions of a Dual-Fuel DI Diesel Engine With Variable In-Cylinder Bulk Flow and Methane Supply Strategies. , 2009, , .		3
47	An Easy and Inexpensive Way to Estimate the Trapping Efficiency of a two Stroke Engine. Energy Procedia, 2015, 82, 17-22.	1.8	3
48	Photo-induced combustion of gaseous fuels using carbon nanotubes as ignitor agents: Driving and measuring systems, characterizations. , 2017, , .		3
49	Investigation on Realizing Fuel Rate Shaping Using a Common Rail Injector. , 2003, , .		3
50	Measurements of opacity at exhaust of diesel engine using extinction laser technique. , 2002, 4915, 199.		2
51	An improved parameter identification schema for the dynamic model of LD converters. Journal of Process Control, 2015, 31, 64-72.	3.3	2
52	Cynara cardunculus and coffee grounds as promising biodiesel sources for internal combustion compression ignition engines. Energy Procedia, 2017, 126, 947-954.	1.8	2
53	Combustion and performance characteristics of air-fuel mixtures ignited by means of photo-thermal ignition of Nano-Energetic Materials. Energy Procedia, 2017, 126, 810-817.	1.8	2
54	Design and Calibration Strategies for Improving HCCI Combustion in Dual-Fuel Diesel–Methane Engines. Energy, Environment, and Sustainability, 2019, , 267-296.	1.0	2

ANTONIO PAOLO CARLUCCI

#	Article	IF	CITATIONS
55	Comprehensive Characterization of the Behavior of a Diesel Oxidation Catalyst Used on a Dual-Fuel Engine. Journal of Energy Engineering - ASCE, 2020, 146, .	1.9	2
56	Biofuel Combustion Generated Particles Analysis. Energy, Environment, and Sustainability, 2022, , 117-129.	1.0	1
57	A novel method based on gas microsensors to analyze diesel engine oil contaminated by diluent unburned diesel fuel. , 2006, , .		0
58	Application of the Mean-Variance Theory and Resampling Technique for the Italian Energy Portfolio Settlement. Advanced Materials Research, 0, 869-870, 581-592.	0.3	0
59	Potential Application of Photo-thermal Volumetric Ignition of Carbon Nanotubes in Internal Combustion Engines. , 0, , .		0
60	Application fields overview of carbon nanotubes in electronics and propulsion: CNTs photo-ignition by white power LEDs for improved fuels combustion. , 2018, , .		0
61	Dual-fuel combustion fundamentals: Experimental-numerical analysis into a constant-volume vessel. AIP Conference Proceedings, 2019, , .	0.4	0
62	Assessment of late pilot injection effect in dual-fuel combustion. E3S Web of Conferences, 2020, 197, 06010.	0.5	0