
Christina Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In Situ</i> Cross-Linking of Electrospun Poly(vinyl alcohol) Nanofibers. Macromolecules, 2010, 43, 630-637.	2.2	188
2	Alginate–Polyethylene Oxide Blend Nanofibers and the Role of the Carrier Polymer in Electrospinning. Industrial & Engineering Chemistry Research, 2013, 52, 8692-8704.	1.8	133
3	Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocolloids, 2014, 35, 36-50.	5.6	113
4	Controlling and Predicting Nanoparticle Formation by Block Copolymer Directed Rapid Precipitations. Nano Letters, 2018, 18, 1139-1144.	4.5	84
5	Polymer Directed Self-Assembly of pH-Responsive Antioxidant Nanoparticles. Langmuir, 2015, 31, 3612-3620.	1.6	61
6	Cyclodextrin fibers via polymer-free electrospinning. RSC Advances, 2012, 2, 3778.	1.7	60
7	Cross-linked Polymer Nanofibers for Hyperthermophilic Enzyme Immobilization: Approaches to Improve Enzyme Performance. ACS Applied Materials & Interfaces, 2014, 6, 11899-11906.	4.0	55
8	Effect of pH on Protein Distribution in Electrospun PVA/BSA Composite Nanofibers. Biomacromolecules, 2012, 13, 1269-1278.	2.6	54
9	Cystic Fibrosis Sputum Rheology Correlates With Both Acute and Longitudinal Changes in Lung Function. Chest, 2018, 154, 370-377.	0.4	48
10	Soft Multifaced and Patchy Colloids by Constrained Volume Self-Assembly. Macromolecules, 2016, 49, 3580-3585.	2.2	45
11	Mammalian Cell Viability in Electrospun Composite Nanofiber Structures. Macromolecular Bioscience, 2011, 11, 1346-1356.	2.1	44
12	Preservation of Cell Viability and Protein Conformation on Immobilization within Nanofibers via Electrospinning Functionalized Yeast. ACS Applied Materials & Interfaces, 2013, 5, 9349-9354.	4.0	34
13	Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. Journal of Membrane Science, 2014, 472, 251-260.	4.1	31
14	Rapidly dissolving poly(vinyl alcohol)/cyclodextrin electrospun nanofibrous membranes. RSC Advances, 2014, 4, 13274.	1.7	30
15	Polyaniline-Functionalized Nanofibers for Colorimetric Detection of HCl Vapor. ACS Omega, 2018, 3, 3587-3591.	1.6	26
16	Biodistribution and fate of core-labeled ¹²⁵ I polymeric nanocarriers prepared by Flash NanoPrecipitation (FNP). Journal of Materials Chemistry B, 2016, 4, 2428-2434.	2.9	23
17	Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation. Nanomaterials, 2020, 10, 561.	1.9	22
18	Polymeric Nanoparticle Delivery of Combination Therapy with Synergistic Effects in Ovarian Cancer. Nanomaterials, 2021, 11, 1048.	1.9	19

CHRISTINA TANG

#	Article	IF	CITATIONS
19	Thermochromic Fibers via Electrospinning. Polymers, 2020, 12, 842.	2.0	18
20	Single-Step Self-Assembly and Physical Crosslinking of PEGylated Chitosan Nanoparticles by Tannic Acid. Polymers, 2019, 11, 749.	2.0	15
21	Shear Force Fiber Spinning: Process Parameter and Polymer Solution Property Considerations. Polymers, 2019, 11, 294.	2.0	14
22	Responsive foams for nanoparticle delivery. Colloids and Surfaces B: Biointerfaces, 2015, 133, 81-87.	2.5	13
23	Self-Assembly of pH-Labile Polymer Nanoparticles for Paclitaxel Prodrug Delivery: Formulation, Characterization, and Evaluation. International Journal of Molecular Sciences, 2020, 21, 9292.	1.8	12
24	Rapid, Room Temperature Nanoparticle Drying and Low-Energy Reconstitution via Electrospinning. Journal of Pharmaceutical Sciences, 2018, 107, 807-813.	1.6	10
25	Rapid, Single-Step Protein Encapsulation via Flash NanoPrecipitation. Polymers, 2019, 11, 1406.	2.0	10
26	Improving Productivity of Multiphase Flow Aerobic Oxidation Using a Tube-in-Tube Membrane Contactor. Catalysts, 2019, 9, 95.	1.6	10
27	Efficient preparation of size tunable PEGylated gold nanoparticles. Journal of Materials Chemistry B, 2016, 4, 4813-4817.	2.9	9
28	Rapid Self-Assembly of Metal/Polymer Nanocomposite Particles as Nanoreactors and Their Kinetic Characterization. Nanomaterials, 2019, 9, 318.	1.9	9
29	Accelerated Reaction Rates within Self-Assembled Polymer Nanoreactors with Tunable Hydrophobic Microenvironments. Polymers, 2020, 12, 1774.	2.0	6
30	Color Space Transformation-Based Algorithm for Evaluation of Thermochromic Behavior of Cholesteric Liquid Crystals Using Polarized Light Microscopy. ACS Omega, 2020, 5, 7149-7157.	1.6	6
31	Amphiphilic Polymer Nanoreactors for Multiple Step, One-Pot Reactions and Spontaneous Product Separation. Polymers, 2021, 13, 1992.	2.0	6
32	Preparation of PEGylated Iodine‣oaded Nanoparticles via Polymerâ€Directed Selfâ€Assembly. Macromolecular Chemistry and Physics, 2018, 219, 1700592.	1.1	5
33	Rheological characterization of poly-dimethyl siloxane formulations with tunable viscoelastic properties. RSC Advances, 2021, 11, 35910-35917.	1.7	4
34	Targeted Theragnostic Nanoparticles Via Flash Nanoprecipitation: Principles of Material Selection. , 2016, , 55-85.		2
35	Identifying Chemical Reactions and Their Associated Attributes in Patents. Frontiers in Research Metrics and Analytics, 2021, 6, 688353.	0.9	1

#	Article	IF	CITATIONS
37	Polymer Nanoparticles Enhance Irreversible Electroporation In Vitro. IEEE Transactions on Biomedical Engineering, 2022, 69, 2353-2362.	2.5	0