
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5762591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food Allergen Nitration Enhances Safety and Efficacy of Oral Immunotherapy in Food Allergy. Nutrients, 2022, 14, 1373.	1.7	1
2	Surface Functionalization of Silica Nanoparticles: Strategies to Optimize the Immune-Activating Profile of Carrier Platforms. Pharmaceutics, 2022, 14, 1103.	2.0	4
3	SARS-CoV-2-Laden Respiratory Aerosol Deposition in the Lung Alveolar-Interstitial Region Is a Potential Risk Factor for Severe Disease: A Modeling Study. Journal of Personalized Medicine, 2021, 11, 431.	1.1	8
4	Blueprint for a self-sustained European Centre for service provision in safe and sustainable innovation for nanotechnology. NanoImpact, 2021, 23, 100337.	2.4	5
5	Gold nanoparticles (AuNPs) impair LPS-driven immune responses by promoting a tolerogenic-like dendritic cell phenotype with altered endosomal structures. Nanoscale, 2021, 13, 7648-7666.	2.8	13
6	Structural Alterations of Antigens at the Material Interface: An Early Decision Toolbox Facilitating Safe-by-Design Nanovaccine Development. International Journal of Molecular Sciences, 2021, 22, 10895.	1.8	3
7	Children's Privilege in COVID-19: The Protective Role of the Juvenile Lung Morphometry and Ventilatory Pattern on Airborne SARS-CoV-2 Transmission to Respiratory Epithelial Barriers and Disease Severity. Biomedicines, 2021, 9, 1414.	1.4	1
8	Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Frontiers in Immunology, 2021, 12, 751683.	2.2	3
9	The nanotopography of SiO ₂ particles impacts the selectivity and 3D fold of bound allergens. Nanoscale, 2021, 13, 20508-20520.	2.8	6
10	Nitrated food proteins induce a regulatory immune response associated with allergy prevention after oral exposure in a Balb/c mouse food allergy model. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 412-422.	2.7	12
11	Public perception and knowledge on nanotechnology: A study based on a citizen science approach. NanoImpact, 2020, 17, 100201.	2.4	25
12	TGFβ1 mimetic peptide modulates immune response to grass pollen allergens in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 882-891.	2.7	16
13	Probing the immune responses to nanoparticles across environmental species. A perspective of the EU Horizon 2020 project PANDORA. Environmental Science: Nano, 2020, 7, 3216-3232.	2.2	17
14	The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. International Journal of Molecular Sciences, 2020, 21, 9695.	1.8	19
15	Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small, 2020, 16, e2000598.	5.2	35
16	Biological effects of allergen–nanoparticle conjugates: uptake and immune effects determined on hAELVi cells under submerged <i>vs.</i> air–liquid interface conditions. Environmental Science: Nano, 2020, 7, 2073-2086.	2.2	9
17	When Would Immunologists Consider a Nanomaterial to be Safe? Recommendations for Planning Studies on Nanosafety. Small, 2020, 16, e1907483.	5.2	22
18	Mechanisms of Particles in Sensitization, Effector Function and Therapy of Allergic Disease. Frontiers in Immunology, 2020, 11, 1334.	2.2	15

#	Article	IF	CITATIONS
19	Interactions of TiO ₂ Nanoparticles with Ingredients from Modern Lifestyle Products and Their Effects on Human Skin Cells. Chemical Research in Toxicology, 2020, 33, 1215-1225.	1.7	13
20	Nanotechnology-Based Vaccines for Allergen-Specific Immunotherapy: Potentials and Challenges of Conventional and Novel Adjuvants under Research. Vaccines, 2020, 8, 237.	2.1	28
21	Immune Effects of the Nitrated Food Allergen Beta-Lactoglobulin in an Experimental Food Allergy Model. Nutrients, 2019, 11, 2463.	1.7	4
22	Particle toxicology and health - where are we?. Particle and Fibre Toxicology, 2019, 16, 19.	2.8	133
23	The protein corona suppresses the cytotoxic and pro-inflammatory response in lung epithelial cells and macrophages upon exposure to nanosilica. Archives of Toxicology, 2019, 93, 871-885.	1.9	53
24	A survey on the state of nanosafety research in the European Union and the United States. Journal of Nanoparticle Research, 2018, 20, 335.	0.8	16
25	Biologic effects of nanoparticle-allergen conjugates: time-resolved uptake using an <i>in vitro</i> lung epithelial co-culture model of A549 and THP-1 cells. Environmental Science: Nano, 2018, 5, 2184-2197.	2.2	8
26	The role of B7 costimulation in benzene immunotoxicity and its potential association with cancer risk. Environmental Research, 2018, 166, 91-99.	3.7	15
27	IL-1β induces expression of costimulatory molecules and cytokines but not immune feedback regulators in dendritic cells. Human Immunology, 2018, 79, 610-615.	1.2	12
28	Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts. Journal of Nanobiotechnology, 2017, 15, 11.	4.2	55
29	Bovine Serum Albumin Adsorption on TiO ₂ Colloids: The Effect of Particle Agglomeration and Surface Composition. Langmuir, 2017, 33, 2551-2558.	1.6	44
30	Immune System. , 2017, , 313-337.		4
31	A Novel Exposure System Termed NAVETTA for In Vitro Laminar Flow Electrodeposition of Nanoaerosol and Evaluation of Immune Effects in Human Lung Reporter Cells. Environmental Science & Technology, 2017, 51, 5259-5269.	4.6	23
32	Biological Activity of Masked Endotoxin. Scientific Reports, 2017, 7, 44750.	1.6	65
33	Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environmental Science & Technology, 2017, 51, 4119-4141.	4.6	193
34	Pan-European inter-laboratory studies on a panel of in vitro cytotoxicity and pro-inflammation assays for nanoparticles. Archives of Toxicology, 2017, 91, 2315-2330.	1.9	35
35	Nanoparticles and innate immunity: new perspectives on host defence. Seminars in Immunology, 2017, 34, 33-51.	2.7	244
36	Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology, 2017, 11, 1157-1175.	1.6	80

#	Article	IF	CITATIONS
37	NOD1 modulates IL-10 signalling in human dendritic cells. Scientific Reports, 2017, 7, 1005.	1.6	12
38	Nanomaterials in the Context of Type 2 Immune Responses—Fears and Potentials. Frontiers in Immunology, 2017, 8, 471.	2.2	19
39	Enzyme adsorption-induced activity changes: a quantitative study on TiO2 model agglomerates. Journal of Nanobiotechnology, 2017, 15, 55.	4.2	14
40	Editorial (Thematic Issue : Exploiting Knowledge on Nano-Immune Interactions: The Present and the) Tj ETQq0 0	0 rgBT /O 9.6	verlock 10 Tf
41	Current Trends in Nanoeducation for Industry and Society. Current Bionanotechnology, 2017, 2, 112-115.	0.6	1
42	Immune Frailty and Nanomaterials: The Case of Allergies. Current Bionanotechnology, 2016, 2, 20-28.	0.6	7
43	Editorial: Interaction Between the Immune System and Nanomaterials: Safety and Medical Exploitation. Current Bionanotechnology, 2016, 2, 3-5.	0.6	5
44	Nanomedicine. , 2016, , 251-274.		3
45	Nanoeducation for Industry and Society. Innovation, Technology and Knowledge Management, 2016, , 93-115.	0.4	0
46	Nanoparticle-allergen interactions mediate human allergic responses: protein corona characterization and cellular responses. Particle and Fibre Toxicology, 2015, 13, 3.	2.8	52
47	Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Particle and Fibre Toxicology, 2015, 13, 49.	2.8	65
48	Impact of storage conditions and storage time on silver nanoparticles' physicochemical properties and implications for their biological effects. RSC Advances, 2015, 5, 84172-84185.	1.7	103
49	Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Particle and Fibre Toxicology, 2015, 12, 29.	2.8	29
50	Nitration of β-Lactoglobulin but Not of Ovomucoid Enhances Anaphylactic Responses in Food Allergic Mice. PLoS ONE, 2015, 10, e0126279.	1.1	11
51	Chitosan functionalisation of gold nanoparticles encourages particle uptake and induces cytotoxicity and pro-inflammatory conditions in phagocytic cells, as well as enhancing particle interactions with serum components. Journal of Nanobiotechnology, 2015, 13, 84.	4.2	75
52	Prerequisites for Functional Interleukin 31 Signaling and Its Feedback Regulation by Suppressor of Cytokine Signaling 3 (SOCS3). Journal of Biological Chemistry, 2015, 290, 24747-24759.	1.6	27
53	Workflows for automated downstream data analysis and visualization in largeâ€scale computational mass spectrometry. Proteomics, 2015, 15, 1443-1447.	1.3	32
54	The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. Journal of Nanobiotechnology, 2015, 13, 1.	4.2	185

#	Article	IF	CITATIONS
55	Enhanced Deposition by Electrostatic Field-Assistance Aggravating Diesel Exhaust Aerosol Toxicity for Human Lung Cells. Environmental Science & Technology, 2015, 49, 8721-8730.	4.6	5
56	Biological reactivity of zinc oxide nanoparticles with mammalian test systems: an overview. Nanomedicine, 2015, 10, 2075-2092.	1.7	92
57	Early hematological and immunological alterations in gasoline station attendants exposed to benzene. Environmental Research, 2015, 137, 349-356.	3.7	34
58	Impact of nanosilver on various DNA lesions and HPRT gene mutations – effects of charge and surface coating. Particle and Fibre Toxicology, 2015, 12, 25.	2.8	66
59	The Impact of Nitration on the Structure and Immunogenicity of the Major Birch Pollen Allergen Bet v 1.0101. PLoS ONE, 2014, 9, e104520.	1.1	70
60	Interaction of differently functionalized fluorescent silica nanoparticles with neural stem- and tissue-type cells. Nanotoxicology, 2014, 8, 138-148.	1.6	37
61	Stabilization of the Dimeric Birch Pollen Allergen Bet v 1 Impacts Its Immunological Properties. Journal of Biological Chemistry, 2014, 289, 540-551.	1.6	27
62	Residual Endotoxin Contaminations in Recombinant Proteins Are Sufficient to Activate Human CD1c+ Dendritic Cells. PLoS ONE, 2014, 9, e113840.	1.1	141
63	Is the toxic potential of nanosilver dependent on its size?. Particle and Fibre Toxicology, 2014, 11, 65.	2.8	71
64	Nanoparticles and Allergy. , 2014, , 55-68.		3
65	Nanoparticles and Adaptive Immunity. , 2014, , 33-53.		0
66	Human Th2 but Not Th9 Cells Release IL-31 in a STAT6/NF-κB–Dependent Way. Journal of Immunology, 2014, 193, 645-654.	0.4	57
67	Nitration of the Birch Pollen Allergen Bet v 1.0101: Efficiency and Site-Selectivity of Liquid and Gaseous Nitrating Agents. Journal of Proteome Research, 2014, 13, 1570-1577.	1.8	51
68	The Significance and Insignificance of Carbon Nanotube-Induced Inflammation. Fibers, 2014, 2, 45-74.	1.8	14
69	Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. Journal of Nanobiotechnology, 2013, 11, 26.	4.2	799
70	TLR8 and NOD signaling synergistically induce the production of IL-1Î ² and IL-23 in monocyte-derived DCs and enhance the expression of the feedback inhibitor SOCS2. Immunobiology, 2013, 218, 533-542.	0.8	41
71	Altered characteristics of silica nanoparticles in bovine and human serum: the importance of nanomaterial characterization prior to its toxicological evaluation. Particle and Fibre Toxicology, 2013, 10, 56.	2.8	106
72	Development of an on-line exposure system to determine freshly produced diesel engine emission-induced cellular effects. Toxicology in Vitro, 2013, 27, 1746-1752.	1.1	9

#	Article	IF	CITATIONS
73	Determination of nitration degrees for the birch pollen allergen Bet $ m v$ 1. Analytical and Bioanalytical Chemistry, 2013, 405, 8945-8949.	1.9	22
74	The Human Pendrin Promoter Contains two N ₄ GAS Motifs with Different Functional Relevance. Cellular Physiology and Biochemistry, 2013, 32, 238-248.	1.1	11
75	Dendritic Cells Activated by IFN-Î ³ /STAT1 Express IL-31 Receptor and Release Proinflammatory Mediators upon IL-31 Treatment. Journal of Immunology, 2012, 188, 5319-5326.	0.4	57
76	Immune System. , 2012, , 169-184.		3
77	STAT6â€dependent and â€independent mechanisms in <scp>T</scp> h2 polarization. European Journal of Immunology, 2012, 42, 2827-2833.	1.6	122
78	Biocompatible micro cavity chip for noninvasive toxicity studies on the cellular level. Toxicology Letters, 2012, 211, S42-S43.	0.4	0
79	Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions <i>in vitro</i> and <i>in vivo</i> ; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology, 2012, 6, 22-35.	1.6	202
80	Nitration of the Pollen Allergen Bet v 1.0101 Enhances the Presentation of Bet v 1-Derived Peptides by HLA-DR on Human Dendritic Cells. PLoS ONE, 2012, 7, e31483.	1.1	60
81	Nano-immunosafety: issues in assay validation. Journal of Physics: Conference Series, 2011, 304, 012077.	0.3	5
82	Biocompatible micro-sized cell culture chamber for the detection of nanoparticle-induced IL8 promoter activity on a small cell population. Nanoscale Research Letters, 2011, 6, 505.	3.1	13
83	Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Particle and Fibre Toxicology, 2011, 8, 36.	2.8	223
84	Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Particle and Fibre Toxicology, 2011, 8, 8.	2.8	170
85	Nitration of ovalbumin decreases the risk for sensitization via the oral route in a mouse food allergy model. Clinical and Translational Allergy, 2011, 1, .	1.4	Ο
86	Hardening of the Nanoparticle–Protein Corona in Metal (Au, Ag) and Oxide (Fe ₃ O ₄ , CoO, and CeO ₂) Nanoparticles. Small, 2011, 7, 3479-3486.	5.2	207
87	Towards nanotechnology regulation – Publish the unpublishable. Nano Today, 2011, 6, 228-231.	6.2	16
88	Inhibition of Suppressive T Cell Factor 1 (TCF-1) Isoforms in Naive CD4+ T Cells Is Mediated by IL-4/STAT6 Signaling. Journal of Biological Chemistry, 2011, 286, 919-928.	1.6	29
89	Suppressor of Cytokine Signaling 2 Is a Feedback Inhibitor of TLR-Induced Activation in Human Monocyte-Derived Dendritic Cells. Journal of Immunology, 2011, 187, 2875-2884.	0.4	59
90	Interactions between effects of environmental chemicals and natural stressors: A review. Science of the Total Environment, 2010, 408, 3746-3762.	3.9	621

#	Article	IF	CITATIONS
91	The suitability of different cellular <i>in vitro</i> immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicology, 2010, 4, 52-72.	1.6	94
92	Time Evolution of the Nanoparticle Protein Corona. ACS Nano, 2010, 4, 3623-3632.	7.3	1,034
93	Nitration of the Egg-Allergen Ovalbumin Enhances Protein Allergenicity but Reduces the Risk for Oral Sensitization in a Murine Model of Food Allergy. PLoS ONE, 2010, 5, e14210.	1.1	39
94	SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicology and Applied Pharmacology, 2009, 234, 378-390.	1.3	89
95	Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples. Toxicology and Applied Pharmacology, 2009, 236, 276-281.	1.3	90
96	<i>In vitro</i> investigation of immunomodulatory effects caused by engineered inorganic nanoparticles – the impact of experimental design and cell choice. Nanotoxicology, 2009, 3, 46-59.	1.6	33
97	The cytotoxic effects of the organophosphates chlorpyrifos and diazinon differ from their immunomodulating effects. Journal of Immunotoxicology, 2009, 6, 136-145.	0.9	39
98	Patulin influences the expression of Th1/Th2 cytokines by activated peripheral blood mononuclear cells and T cells through depletion of intracellular glutathione. Environmental Toxicology, 2008, 23, 84-95.	2.1	38
99	Characterization of intrinsic and extrinsic risk factors for celery allergy in immunosenescence. Mechanisms of Ageing and Development, 2008, 129, 120-128.	2.2	28
100	Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-κB activation. Toxicology and Applied Pharmacology, 2008, 231, 241-247.	1.3	43
101	A high-throughput screening method based on stably transformed human cells was used to determine the immunotoxic effects of fluoranthene and other PAHs. Toxicology in Vitro, 2008, 22, 1301-1310.	1.1	32
102	LEF-1 Negatively Controls Interleukin-4 Expression through a Proximal Promoter Regulatory Element. Journal of Biological Chemistry, 2008, 283, 22490-22497.	1.6	24
103	Chlorobenzene Induces the NF- <i>κ</i> B and p38 MAP Kinase Pathways in Lung Epithelial Cells. Inhalation Toxicology, 2008, 20, 813-820.	0.8	21
104	Active Induction of Tumor-Specific IgE Antibodies by Oral Mimotope Vaccination. Cancer Research, 2007, 67, 3406-3411.	0.4	43
105	Identification of a distal tandem STAT6 element within the CCL17 locus. Human Immunology, 2007, 68, 986-992.	1.2	9
106	Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies. Proteomics, 2007, 7, 1786-1799.	1.3	69
107	Nitration Enhances the Allergenic Potential of Proteins. International Archives of Allergy and Immunology, 2006, 141, 265-275.	0.9	114
108	Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine and Growth Factor Reviews, 2006, 17, 173-188.	3.2	272

#	Article	IF	CITATIONS
109	IL-4 induces expression of TARC/CCL17via two STAT6 binding sites. European Journal of Immunology, 2006, 36, 1882-1891.	1.6	79
110	SOCS-1 and SOCS-3 inhibit IL-4 and IL-13 induced activation of Eotaxin-3/CCL26 gene expression in HEK293 cells. Molecular Immunology, 2005, 42, 295-303.	1.0	43
111	Inhibition of the IL-4/IL-13 receptor system prevents allergic sensitization without affecting established allergy in a mouse model for allergic asthma. Journal of Allergy and Clinical Immunology, 2003, 111, 1361-1369.	1.5	66
112	The diesel exhaust component pyrene induces expression of IL-8 but not of eotaxin. International Immunopharmacology, 2003, 3, 1371-1379.	1.7	35
113	IL-4 and IL-13 Induce <i>SOCS-1</i> Gene Expression in A549 Cells by Three Functional STAT6-Binding Motifs Located Upstream of the Transcription Initiation Site. Journal of Immunology, 2003, 171, 5901-5907.	0.4	58
114	Phytochemical Inhibition of Interleukin-4-Activated Stat6 and Expression of VCAM-1. Biochemical and Biophysical Research Communications, 2002, 292, 841-847.	1.0	23
115	Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochimica Et Biophysica Acta - Molecular Cell Research, 2002, 1592, 237-250.	1.9	160
116	The Impact of the Route and Frequency of Antigen Exposure on the IgE Response in Allergy. International Archives of Allergy and Immunology, 2001, 124, 461-469.	0.9	44
117	Specific inhibition of interleukin-4-dependent Stat6 activation by an intracellularly delivered peptide. FEBS Journal, 2001, 268, 4809-4814.	0.2	22
118	Upon Prolonged Allergen Exposure IL-4 and IL-4Rα Knockout Mice Produce Specific IgE Leading to Anaphylaxis. International Archives of Allergy and Immunology, 2001, 125, 322-328.	0.9	22
119	The Interleukin-4-Receptor: From Recognition Mechanism to Pharmacological Target Structure. Angewandte Chemie - International Edition, 2000, 39, 2834-2846.	7.2	17
120	The environmental pollutant pyrene induces the production of IL-4. Journal of Allergy and Clinical Immunology, 2000, 105, 796-802.	1.5	79
121	An antagonistic IL-4 mutant (QY) inhibits allergic symptoms mediated either by IgE or IgG dependent mast cell degranulation in vivo. Journal of Dermatological Science, 1998, 16, S29.	1.0	0
122	IL-4 receptor complexes containing or lacking the gamma C chain are inhibited by an overlapping set of antagonistic IL-4 mutant proteins. International Immunology, 1997, 9, 861-868.	1.8	18
123	A Murine Interleukin-4 Antagonistic Mutant Protein Completely Inhibits Interleukin-4-induced Cell Proliferation, Differentiation, and Signal Transduction. Journal of Biological Chemistry, 1997, 272, 1480-1483.	1.6	40
124	Interleukinâ€13 selectively induces monocyte chemoattractant proteinâ€1 synthesis and secretion by human endothelial cells. Involvement of ILâ€4R α and Stat6 phosphorylation. Immunology, 1997, 91, 450-457.	2.0	67
125	Mouse macrophage development in the absence of the common Î ³ chain: defining receptor complexes responsible for IL-4 and IL-13 signaling. European Journal of Immunology, 1997, 27, 1762-1768.	1.6	33
126	Interleukin-4 upregulates the heat shock protein Hsp90α and enhances transcription of a reporter gene coupled to a single heat shock element. FEBS Letters, 1996, 385, 25-28.	1.3	17

#	Article	IF	CITATIONS
127	The Human IgE Germline Promoter is Regulated By Interleukin-4, Interleukin-13, Interferon-alpha and Interferon-gamma Via an Interferon-gamma-Activated Site and Its Flanking Regions. FEBS Journal, 1996, 240, 667-673.	0.2	28
128	An Antagonistic Mutant of Interleukin-4 Fails to Recruit gammac into the Receptor Complex. Characterization by Specific Crosslinking. FEBS Journal, 1995, 228, 305-310.	0.2	0
129	Both Interleukin 4 and Interleukin 13 Induce Tyrosine Phosphorylation of the 140-kDa Subunit of the Interleukin 4 Receptor. Journal of Biological Chemistry, 1995, 270, 966-970.	1.6	123
130	An Antagonistic Mutant of Interleukin-4 Fails to Recruit gammac into the Receptor Complex. Characterization by Specific Crosslinking. FEBS Journal, 1995, 228, 305-310.	0.2	18
131	Interconversions of the M, N, and O intermediates in the bacteriorhodopsin photocycle. Biochemistry, 1990, 29, 3798-3804.	1.2	45
132	An efficient system for the synthesis of bacteriorhodopsin in Halobacterium halobium. Gene, 1990, 90, 169-172.	1.0	140
133	Anion binding to the chloride pump, halorhodopsin, and its implications for the transport mechanism. FFBS Letters, 1990, 265, 1-6.	1.3	31