Kathleen M Caron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5762059/publications.pdf

Version: 2024-02-01

201385 214527 2,511 65 27 47 citations h-index g-index papers 67 67 67 3565 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	VE-Cadherin Is Required for Cardiac Lymphatic Maintenance and Signaling. Circulation Research, 2022, 130, 5-23.	2.0	23
2	Dermal Lymphatic Capillaries Do Not Obey Murray's Law. Frontiers in Cardiovascular Medicine, 2022, 9, 840305.	1.1	2
3	Orphan G-Protein Coupled Receptor GPRC5B Is Critical for Lymphatic Development. International Journal of Molecular Sciences, 2022, 23, 5712.	1.8	5
4	Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature, 2021, 589, 591-596.	13.7	99
5	Lymphatic Vasculature: An Emerging Therapeutic Target and Drug Delivery Route. Annual Review of Medicine, 2021, 72, 167-182.	5.0	21
6	Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biology of Reproduction, 2021, 105, 876-891.	1.2	6
7	Adrenomedullin: new inhibitory regulator for cortisol synthesis and secretion. Journal of Endocrinology, 2021, 251, 97-109.	1.2	1
8	Accelerated Development With Increased Bone Mass and Skeletal Response to Loading Suggest Receptor Activity Modifying Protein-3 as a Bone Anabolic Target. Frontiers in Endocrinology, 2021, 12, 807882.	1.5	1
9	Pinopodes: Recent advancements, current perspectives, and future directions. Molecular and Cellular Endocrinology, 2020, 501, 110644.	1.6	31
10	Content and Performance of the MiniMUGA Genotyping Array: A New Tool To Improve Rigor and Reproducibility in Mouse Research. Genetics, 2020, 216, 905-930.	1.2	58
11	Lymphatic Programing and Specialization in Hybrid Vessels. Frontiers in Physiology, 2020, 11, 114.	1.3	14
12	A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H895-H907.	1.5	11
13	The Orphan G-Protein Coupled Receptor 182 Is a Negative Regulator of Definitive Hematopoiesis through Leukotriene B4 Signaling. ACS Pharmacology and Translational Science, 2020, 3, 676-689.	2.5	13
14	Adrenomedullin Is Necessary to Resolve Hyperoxia-Induced Experimental Bronchopulmonary Dysplasia and Pulmonary HypertensionÂin Mice. American Journal of Pathology, 2020, 190, 711-722.	1.9	13
15	Dawn of a New RAMPage. Trends in Pharmacological Sciences, 2020, 41, 249-265.	4.0	30
16	Deletion of atypical chemokine receptor 3 (ACKR3) increases immune cells at the fetal-maternal interface. Placenta, 2020, 95, 18-25.	0.7	1
17	Neuropeptide CGRP Limits Group 2 Innate Lymphoid Cell Responses and Constrains Type 2 Inflammation. Immunity, 2019, 51, 682-695.e6.	6.6	192
18	E-Cigarette Exposure Delays Implantation and Causes Reduced Weight Gain in Female Offspring Exposed In Utero. Journal of the Endocrine Society, 2019, 3, 1907-1916.	0.1	38

#	Article	IF	CITATIONS
19	RAMP3 determines rapid recycling of atypical chemokine receptor-3 for guided angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24093-24099.	3.3	38
20	Lymphatic Function and Dysfunction in the Context of Sex Differences. ACS Pharmacology and Translational Science, 2019, 2, 311-324.	2.5	16
21	Calcitonin-Receptor-Like Receptor Signaling Governs Intestinal Lymphatic Innervation and Lipid Uptake. ACS Pharmacology and Translational Science, 2019, 2, 114-121.	2.5	11
22	Innovation and Discovery in Cardiovascular Biology. ACS Pharmacology and Translational Science, 2019, 2, 291-292.	2.5	0
23	Genetic loss of proadrenomedullin N-terminal 20 peptide (PAMP) in mice is compatible with survival. Peptides, 2019, 112, 96-100.	1.2	2
24	Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circulation Research, 2019, 124, 101-113.	2.0	86
25	Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. Journal of Clinical Investigation, 2019, 129, 4912-4921.	3.9	33
26	Notch signaling pathway is a potential therapeutic target for extracranial vascular malformations. Scientific Reports, 2018, 8, 17987.	1.6	23
27	Small GTPase Rap1A/B is Required for Lymphatic Development and Adrenomedullin-Induced Stabilization of Lymphatic Endothelial Junctions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2410-2422.	1.1	23
28	Elevated levels of adrenomedullin in eutopic endometrium and plasma from women with endometriosis. Fertility and Sterility, 2018, 109, 1072-1078.	0.5	10
29	Single-cell analysis of early progenitor cells that build coronary arteries. Nature, 2018, 559, 356-362.	13.7	190
30	Adrenomedullin in Female Reproduction and Pregnancy. , 2018, , 514-520.		0
31	h <i>CALCRL</i> mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia. Journal of Experimental Medicine, 2018, 215, 2339-2353.	4.2	25
32	Adrenomedullin improves fertility and promotes pinopodes and cell junctions in the peri-implantation endometriumâ€. Biology of Reproduction, 2017, 97, 466-477.	1.2	30
33	Lymphatic deletion of calcitonin receptor–like receptor exacerbates intestinal inflammation. JCI Insight, 2017, 2, e92465.	2.3	56
34	Loss of receptor activity-modifying protein 2 in mice causes placental dysfunction and alters PTH1R regulation. PLoS ONE, 2017, 12, e0181597.	1.1	11
35	Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. Journal of Clinical Investigation, 2017, 127, 593-607.	3.9	19
36	Endothelial Restoration of Receptor Activity–Modifying Protein 2 Is Sufficient to Rescue Lethality, but Survivors Develop Dilated Cardiomyopathy. Hypertension, 2016, 68, 667-677.	1.3	13

#	Article	IF	CITATIONS
37	Cohort of estrogen-induced microRNAs regulate adrenomedullin expression. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R209-R216.	0.9	9
38	The expanding repertoire of receptor activity modifying protein (RAMP) function. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 65-71.	2.3	31
39	Blood and Lymphatic Vessel Formation. Cold Spring Harbor Perspectives in Biology, 2015, 7, a008268.	2.3	52
40	Adrenomedullin in lymphangiogenesis: from development to disease. Cellular and Molecular Life Sciences, 2015, 72, 3115-3126.	2.4	23
41	Gap Junction Coupling Is Required for Tumor Cell Migration Through Lymphatic Endothelium. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1147-1155.	1.1	22
42	Deficiency of RAMP1 Attenuates Antigen-Induced Airway Hyperresponsiveness in Mice. PLoS ONE, 2014, 9, e102356.	1.1	36
43	Uterine natural killer cells as modulators of the maternal-fetal vasculature. International Journal of Developmental Biology, 2014, 58, 199-204.	0.3	20
44	Adrenomedullin Signaling Pathway Polymorphisms and Adverse Pregnancy Outcomes. American Journal of Perinatology, 2014, 31, 327-334.	0.6	15
45	Epicardialâ€derived adrenomedullin drives cardiac hyperplasia during embryogenesis. Developmental Dynamics, 2014, 243, 243-256.	0.8	25
46	Adrenomedullin and endocrine control of immune cells during pregnancy. Cellular and Molecular Immunology, 2014, 11, 456-459.	4.8	23
47	Decoy Receptor CXCR7 Modulates Adrenomedullin-Mediated Cardiac and Lymphatic Vascular Developmental Cell, 2014, 30, 528-540.	3.1	77
48	Schlemm's canal: more than meets the eye, lymphatics in disguise. Journal of Clinical Investigation, 2014, 124, 3701-3703.	3.9	33
49	G-protein-coupled receptor 30 interacts with receptor activity-modifying protein 3 and confers sex-dependent cardioprotection. Journal of Molecular Endocrinology, 2013, 51, 191-202.	1.1	65
50	Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB Journal, 2013, 27, 590-600.	0.2	32
51	Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta. Journal of Clinical Investigation, 2013, 123, 2408-2420.	3.9	54
52	Loss of receptor activity-modifying protein 3 exacerbates cardiac hypertrophy and transition to heart failure in a sex-dependent manner. Journal of Molecular and Cellular Cardiology, 2012, 52, 165-174.	0.9	22
53	Adrenomedullin and pregnancy: perspectives from animal models to humans. Trends in Endocrinology and Metabolism, 2012, 23, 524-532.	3.1	42
54	Characteristics of Multi-Organ Lymphangiectasia Resulting from Temporal Deletion of Calcitonin Receptor-Like Receptor in Adult Mice. PLoS ONE, 2012, 7, e45261.	1.1	44

#	Article	IF	CITATIONS
55	Understanding RAMPs Through Genetically Engineered Mouse Models. Advances in Experimental Medicine and Biology, 2012, 744, 49-60.	0.8	20
56	Adrenomedullin Function in Vascular Endothelial Cells: Insights from Genetic Mouse Models. Current Hypertension Reviews, 2011, 7, 228-239.	0.5	36
57	Research Resource: Haploinsufficiency of Receptor Activity-Modifying Protein-2 (Ramp2) Causes Reduced Fertility, Hyperprolactinemia, Skeletal Abnormalities, and Endocrine Dysfunction in Mice. Molecular Endocrinology, 2011, 25, 1244-1253.	3.7	34
58	G Protein–Coupled Receptors as Potential Drug Targets for Lymphangiogenesis and Lymphatic Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 650-656.	1.1	26
59	Adrenomedullin stabilizes the lymphatic endothelial barrier in vitro and in vivo. Peptides, 2008, 29, 2243-2249.	1.2	55
60	Haploinsufficiency for Adrenomedullin Reduces Pinopodes and Diminishes Uterine Receptivity in Mice1. Biology of Reproduction, 2008, 79, 1169-1175.	1.2	42
61	Adrenomedullin signaling is necessary for murine lymphatic vascular development. Journal of Clinical Investigation, 2008, 118, 40-50.	3.9	217
62	Receptor Activity-Modifying Proteins: RAMPing up Adrenomedullin Signaling. Molecular Endocrinology, 2007, 21, 783-796.	3.7	82
63	Hydrops Fetalis, Cardiovascular Defects, and Embryonic Lethality in Mice Lacking the Calcitonin Receptor-Like Receptor Gene. Molecular and Cellular Biology, 2006, 26, 2511-2518.	1.1	119
64	Reduced maternal expression of adrenomedullin disrupts fertility, placentation, and fetal growth in mice. Journal of Clinical Investigation, 2006, 116, 2653-2662.	3.9	92
65	Multiple roles of adrenomedullin revealed by animal models. Microscopy Research and Technique, 2002, 57, 55-59.	1.2	12