
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761980/publications.pdf Version: 2024-02-01

XIAN-TH HE

#	Article	IF	CITATIONS
1	Classical Aspects in Above-Threshold Ionization with a Midinfrared Strong Laser Field. Physical Review Letters, 2009, 103, 093001.	2.9	269
2	Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nature Physics, 2010, 6, 984-987.	6.5	155
3	Characteristic Spectrum of Very Low-Energy Photoelectron from Above-Threshold Ionization in the Tunneling Regime. Physical Review Letters, 2012, 109, 043001.	2.9	119
4	Laser Shaping of a Relativistic Intense, Short Gaussian Pulse by a Plasma Lens. Physical Review Letters, 2011, 107, 265002.	2.9	111
5	Progress in octahedral spherical hohlraum study. Matter and Radiation at Extremes, 2016, 1, 8-27.	1.5	106
6	Effect of compressibility on the small-scale structures in isotropic turbulence. Journal of Fluid Mechanics, 2012, 713, 588-631.	1.4	105
7	Plasmoid Ejection and Secondary Current Sheet Generation from Magnetic Reconnection in Laser-Plasma Interaction. Physical Review Letters, 2012, 108, 215001.	2.9	102
8	Fast ignition by laser driven particle beams of very high intensity. Physics of Plasmas, 2007, 14, 072701.	0.7	101
9	A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion. Physics of Plasmas, 2016, 23, .	0.7	97
10	Low Yield of Near-Zero-Momentum Electrons and Partial Atomic Stabilization in Strong-Field Tunneling Ionization. Physical Review Letters, 2012, 109, 093001.	2.9	89
11	Inertial fusion research in China. European Physical Journal D, 2007, 44, 227-231.	0.6	87
12	Laser Acceleration of Highly Energetic Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense Plasma and Ultrathin Foil. Physical Review Letters, 2019, 122, 014803.	2.9	84
13	Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number. Physical Review E, 2002, 65, 057401.	0.8	78
14	Cascade of Kinetic Energy in Three-Dimensional Compressible Turbulence. Physical Review Letters, 2013, 110, 214505.	2.9	78
15	Generating Overcritical Dense Relativistic Electron Beams via Self-Matching Resonance Acceleration. Physical Review Letters, 2013, 110, 045002.	2.9	77
16	Fusion energy without radioactivity: laser ignition of solid hydrogen–boron (11) fuel. Energy and Environmental Science, 2010, 3, 479.	15.6	73
17	Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence. Physics of Fluids, 2011, 23, .	1.6	70
18	High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraum-to-capsule radius ratio of 5.14. Physics of Plasmas, 2014, 21, 010704.	0.7	67

#	Article	IF	CITATIONS
19	Twenty times lower ignition threshold for laser driven fusion using collective effects and the inhibition factor. Applied Physics Letters, 2008, 93, .	1.5	64
20	Basic dynamic properties of the high-order nonlinear SchrĶdinger equation. Physical Review A, 1992, 46, 2277-2285.	1.0	58
21	Octahedral spherical hohlraum and its laser arrangement for inertial fusion. Physics of Plasmas, 2014, 21, .	0.7	56
22	Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy—From cold materials to hot dense plasmas. Physics of Plasmas, 2016, 23, .	0.7	54
23	A Review of Equation-of-State Models for Inertial Confinement Fusion Materials. High Energy Density Physics, 2018, 28, 7-24.	0.4	54
24	Characteristics of betatron radiation from direct-laser-accelerated electrons. Physical Review E, 2016, 93, 063203.	0.8	53
25	Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	49
26	Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser and Particle Beams, 2008, 26, 51-60.	0.4	48
27	Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target. Physics of Plasmas, 2010, 17, .	0.7	48
28	Scaling and Statistics in Three-Dimensional Compressible Turbulence. Physical Review Letters, 2012, 108, 214505.	2.9	48
29	Acceleration and guiding of fast electrons by a nanobrush target. Physics of Plasmas, 2010, 17, .	0.7	46
30	Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields. Physical Review E, 2004, 69, 066409.	0.8	45
31	Enhancement of backward Raman scattering by electron-ion collisions. Physics of Plasmas, 2009, 16, 112703.	0.7	43
32	Control of the hot electrons produced by laser interaction with nanolayered target. Physics of Plasmas, 2010, 17, .	0.7	41
33	Quasistatic magnetic and electric fields generated in intense laser plasma interaction. Physics of Plasmas, 2005, 12, 053104.	0.7	40
34	Influence of a large oblique incident angle on energetic protons accelerated from solid-density plasmas by ultraintense laser pulses. Applied Physics Letters, 2007, 90, 031503.	1.5	40
35	Spike deceleration and bubble acceleration in the ablative Rayleigh–Taylor instability. Physics of Plasmas, 2010, 17, .	0.7	40
36	Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction. Scientific Reports, 2017, 7, 45031.	1.6	40

#	Article	IF	CITATIONS
37	Preheating ablation effects on the Rayleigh–Taylor instability in the weakly nonlinear regime. Physics of Plasmas, 2010, 17, .	0.7	39
38	First demonstration of improving laser propagation inside the spherical hohlraums by using the cylindrical laser entrance hole. Matter and Radiation at Extremes, 2016, 1, 2-7.	1.5	39
39	Prepulse effects on the generation of high energy electrons in fast ignition scheme. Physics of Plasmas, 2010, 17, .	0.7	38
40	Fusion energy from plasma block ignition. Laser and Particle Beams, 2005, 23, 423-432.	0.4	37
41	Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder. Physics of Plasmas, 2015, 22, .	0.7	37
42	Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>Z</mml:mi></mml:mrow></mml:math> Material Coating. Physical Review Letters, 2017, 118, 204802.	2.9	37
43	Hundreds MeV monoenergetic proton bunch from interaction of 1020–21 W/cm2 circularly polarized laser pulse with tailored complex target. Applied Physics Letters, 2012, 100, .	1.5	36
44	Nonlinear laser focusing using a conical guide and generation of energetic ions. Physical Review E, 2008, 78, 036405.	0.8	35
45	Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse. Physics of Plasmas, 2013, 20, .	0.7	35
46	Generation of overdense and high-energy electron-positron-pair plasmas by irradiation of a thin foil with two ultraintense lasers. Physical Review E, 2015, 92, 053107.	0.8	35
47	First Investigation on the Radiation Field of the Spherical Hohlraum. Physical Review Letters, 2016, 117, 025002.	2.9	35
48	<i>AbÂlnitio</i> Simulations of Dense Helium Plasmas. Physical Review Letters, 2011, 106, 145002.	2.9	34
49	Effects of the imposed magnetic field on the production and transport of relativistic electron beams. Physics of Plasmas, 2013, 20, 072701.	0.7	34
50	Dense Helical Electron Bunch Generation in Near-Critical Density Plasmas with Ultrarelativistic Laser Intensities. Scientific Reports, 2015, 5, 15499.	1.6	34
51	Thermophysical properties for shock compressed polystyrene. Physics of Plasmas, 2011, 18, .	0.7	33
52	Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Physics of Plasmas, 2012, 19, .	0.7	33
53	Enhanced energy coupling for indirect-drive fast-ignition fusion targets. Nature Physics, 2020, 16, 810-814.	6.5	33
54	Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces. Physics of Plasmas, 2013, 20, 042708.	0.7	32

#	Article	IF	CITATIONS
55	Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer. Physics of Plasmas, 2014, 21, .	0.7	32
56	High-efficiency <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>-ray flash generation via multiple-laser scattering in ponderomotive potential well. Physical Review E, 2017, 95, 013210.</mml:math 	0.8	32
57	Experimental demonstration of a laser proton accelerator with accurate beam control through image-relaying transport. Physical Review Accelerators and Beams, 2019, 22, .	0.6	32
58	Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas. Physical Review E, 2011, 83, 036408.	0.8	31
59	Experimental Evidence of Kinetic Effects in Indirect-Drive Inertial Confinement Fusion Hohlraums. Physical Review Letters, 2018, 120, 195001.	2.9	31
60	Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser and Particle Beams, 2008, 26, 105-112.	0.4	30
61	Suppression of transverse ablative Rayleigh-Taylor-like instability in the hole-boring radiation pressure acceleration by using elliptically polarized laser pulses. Physical Review E, 2014, 90, 023101.	0.8	30
62	Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations. Physical Review E, 2017, 95, 023207.	0.8	30
63	The transition from plasma gratings to cavitons in laser-plasma interactions. Physics of Plasmas, 2009, 16, 093108.	0.7	29
64	Formation of jet-like spikes from the ablative Rayleigh-Taylor instability. Physics of Plasmas, 2012, 19, .	0.7	29
65	RELATIVISTIC ELECTRONS PRODUCED BY RECONNECTING ELECTRIC FIELDS IN A LASER-DRIVEN BENCH-TOP SOLAR FLARE. Astrophysical Journal, Supplement Series, 2016, 225, 30.	3.0	29
66	Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons. Physical Review E, 2017, 95, 023201.	0.8	29
67	Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas. Physics of Plasmas, 2016, 23, 073118.	0.7	28
68	A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions. Physics of Plasmas, 2016, 23, .	0.7	28
69	Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium. Frontiers of Physics, 2016, 11, 1.	2.4	28
70	Link between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi>absorption edges and thermodynamic properties of warm dense plasmas established by an improved first-principles method. Physical Review B, 2016, 93, .</mml:math 	1,1	28
71	Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target. Physical Review E, 2017, 95, 031202.	0.8	28
72	Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime. Plasma Physics and Controlled Fusion, 2018, 60, 044004.	0.9	28

#	Article	IF	CITATIONS
73	Intense laser-driven energetic proton beams from solid density targets. Optics Letters, 2007, 32, 2444.	1.7	27
74	Laser-produced energetic electron transport in overdense plasmas by wire guiding. Applied Physics Letters, 2008, 92, 151502.	1.5	27
75	Quasimonoenergetic electron beam and brilliant gamma-ray radiation generated from near critical density plasma due to relativistic resonant phase locking. Physics of Plasmas, 2015, 22, .	0.7	27
76	High-energy monoenergetic protons from multistaged acceleration of thin double-layer target by circularly polarized laser. Physics of Plasmas, 2011, 18, .	0.7	26
77	Sub-TeV proton beam generation by ultra-intense laser irradiation of foil-and-gas target. Physics of Plasmas, 2012, 19, 023111.	0.7	26
78	Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses. Physics of Plasmas, 2014, 21, .	0.7	26
79	Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers. Physical Review E, 2014, 89, 031101.	0.8	26
80	Competition between stimulated Raman scattering and two-plasmon decay in inhomogeneous plasma. Physics of Plasmas, 2016, 23, .	0.7	26
81	Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma. Physics of Plasmas, 2005, 12, 083102.	0.7	25
82	Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser and Particle Beams, 2007, 25, 313-319.	0.4	25
83	Magnetic field generation and relativistic electron dynamics in circularly polarized intense laser interaction with dense plasma. Physics of Plasmas, 2005, 12, 044505.	0.7	24
84	Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability. Physics of Plasmas, 2012, 19, .	0.7	24
85	On the stimulated Raman sidescattering in inhomogeneous plasmas: revisit of linear theory and three-dimensional particle-in-cell simulations. Plasma Physics and Controlled Fusion, 2018, 60, 025020.	0.9	24
86	Particle-in-cell simulations of laser–plasma interactions at solid densities and relativistic intensities: the role of atomic processes. High Power Laser Science and Engineering, 2018, 6, .	2.0	24
87	Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction. Physics of Plasmas, 2006, 13, 053106.	0.7	23
88	An initial design of hohlraum driven by a shaped laser pulse. Laser and Particle Beams, 2010, 28, 421-427.	0.4	23
89	High-density highly collimated monoenergetic GeV ions from interaction of ultraintense short laser pulse with foil in plasma. Physics of Plasmas, 2010, 17, 043110.	0.7	23
90	Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids. Physical Review E, 2013, 87, 013001.	0.8	23

#	Article	IF	CITATIONS
91	Mitigating the relativistic laser beam filamentation via an elliptical beam profile. Physical Review E, 2015, 92, 053106.	0.8	23
92	Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations. Physical Review E, 2017, 95, 023208.	0.8	23
93	Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion. Physical Review Letters, 2017, 118, 165001.	2.9	23
94	Stochastic diffusion of electrons in evolutive Langmuir fields. Physica Scripta, 1994, 50, 415-418.	1.2	22
95	A binary mixture of monodisperse polymers of fixed architectures, and the critical and the theta states. Journal of Chemical Physics, 1998, 108, 5104-5121.	1.2	22
96	Intense-laser generated relativistic electron transport in coaxial two-layer targets. Applied Physics Letters, 2008, 92, .	1.5	22
97	Weakly nonlinear analysis on the Kelvin-Helmholtz instability. Europhysics Letters, 2009, 86, 15002.	0.7	22
98	Study on AuÂ+ÂUÂ+ÂAu sandwich Hohlraum wall for ignition targets. Laser and Particle Beams, 2010, 28, 75-81.	0.4	22
99	Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles. Physics of Plasmas, 2011, 18, .	0.7	22
100	Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target. AIP Advances, 2016, 6, .	0.6	22
101	Revisit on ion acceleration mechanisms in solid targets driven by intense laser pulses. Plasma Physics and Controlled Fusion, 2019, 61, 014039.	0.9	22
102	Nonlinear force driven plasma blocks igniting solid density hydrogen boron: Laser fusion energy without radioactivity. Laser and Particle Beams, 2009, 27, 491-496.	0.4	21
103	Interactions between inertial particles and shocklets in compressible turbulent flow. Physics of Fluids, 2014, 26, .	1.6	21
104	Collimated gamma photon emission driven by PW laser pulse in a plasma density channel. Applied Physics Letters, 2017, 110, .	1.5	21
105	Pattern structures on generalized nonlinear Schrödinger equations with various nonlinear terms. Physical Review E, 1994, 50, 4136-4155.	0.8	20
106	Spatiotemporal Chaos in The Regime of the Conserved Zakharov Equations. Physical Review Letters, 1995, 74, 78-81.	2.9	20
107	Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser and Particle Beams, 2004, 22, 83-87.	0.4	20
108	Nonlinear evolution of stimulated Raman scattering near the quarter-critical density. Physics of Plasmas, 2015, 22, 052121.	0.7	20

#	Article	IF	CITATIONS
109	Excitation of nonlinear ion acoustic waves in CH plasmas. Physics of Plasmas, 2016, 23, 082106.	0.7	20
110	Energetic electron-bunch generation in a phase-locked longitudinal laser electric field. Physical Review E, 2016, 93, 043207.	0.8	20
111	Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure. Physical Review B, 2016, 94, .	1.1	20
112	Multidimensional effects on proton acceleration using high-power intense laser pulses. Physics of Plasmas, 2018, 25, .	0.7	20
113	First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter. Physical Review Letters, 2018, 120, 205002.	2.9	20
114	Slow-time-scale magnetic fields driven by fast-time-scale waves in an underdense relativistic Vlasov plasma. Physics of Plasmas, 2001, 8, 321-328.	0.7	19
115	Additional acceleration and collimation of relativistic electron beams by magnetic field resonance at very high intensity laser interaction. Applied Physics B: Lasers and Optics, 2006, 82, 93-97.	1.1	19
116	Synthesis, characterization, and antibacterial activity of new rare-earth ion complexes with unsymmetrical Schiff base ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2007, 33, 535-538.	0.3	19
117	Preplasma effects on the generation of high-energy protons in ultraintense laser interaction with foil targets. Physics of Plasmas, 2013, 20, .	0.7	19
118	High-order implicit particle-in-cell method for plasma simulations at solid densities. Physical Review E, 2019, 100, 013207.	0.8	19
119	Dynamics of relativistic electrons propagating in a funnel-guided target. Physics of Plasmas, 2010, 17, 083103.	0.7	18
120	Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability. Physics of Plasmas, 2012, 19, .	0.7	18
121	Equations of state and transport properties of warm dense beryllium: A quantum molecular dynamics study. Physical Review E, 2013, 87, 043105.	0.8	18
122	Acceleration of Passive Tracers in Compressible Turbulent Flow. Physical Review Letters, 2013, 110, 064503.	2.9	18
123	The radiation reaction effects in the ultra-intense and ultra-short laser foil interaction regime. Physics of Plasmas, 2015, 22, .	0.7	18
124	Nonlinear parametric resonance of relativistic electrons with a linearly polarized laser pulse in a plasma channel. Physics of Plasmas, 2017, 24, .	0.7	18
125	First experimental comparisons of laser-plasma interactions between spherical and cylindrical hohlraums at SGIII laser facility. Matter and Radiation at Extremes, 2017, 2, 77-86.	1.5	18
126	Giant Isolated Attosecond Pulses from Two-Color Laser-Plasma Interactions. Physical Review Letters, 2020, 124, 114802.	2.9	18

#	Article	IF	CITATIONS
127	Density effect on relativistic electron beams in a plasma fiber. Applied Physics Letters, 2010, 97, 201502.	1.5	17
128	Propagation of energetic electrons in a hollow plasma fiber. Applied Physics Letters, 2010, 97, 051502.	1.5	17
129	Formation of large-scale structures in ablative Kelvin–Helmholtz instability. Physics of Plasmas, 2010, 17, 122308.	0.7	17
130	Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas. Physics of Plasmas, 2012, 19, .	0.7	17
131	Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime. Physics of Plasmas, 2013, 20, .	0.7	17
132	Statistics and structures of pressure and density in compressible isotropic turbulence. Journal of Turbulence, 2013, 14, 21-37.	0.5	16
133	Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics. Scientific Reports, 2016, 6, 27108.	1.6	16
134	Linear theory of multibeam parametric instabilities in homogeneous plasmas. Physics of Plasmas, 2019, 26, .	0.7	16
135	Stimulated Brillouin scattering of backward stimulated Raman scattering. Scientific Reports, 2020, 10, 3492.	1.6	16
136	A comparison of ultrarelativistic electron- and positron-bunch propagation in plasmas. Physics of Plasmas, 2006, 13, 092109.	0.7	15
137	X-wave solutions of complex Ginzburg-Landau equations. Physical Review E, 2006, 73, 026209.	0.8	15
138	Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh-Taylor Instability. Chinese Physics Letters, 2010, 27, 125203.	1.3	15
139	A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion. Physics of Plasmas, 2014, 21, .	0.7	15
140	Guiding and collimation of laser-accelerated proton beams using thin foils followed with a hollow plasma channel. Physics of Plasmas, 2015, 22, .	0.7	15
141	Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions. Physics of Plasmas, 2016, 23, .	0.7	15
142	Radiation reaction induced spiral attractors in ultra-intense colliding laser beams. Matter and Radiation at Extremes, 2016, 1, 308-315.	1.5	15
143	Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region. Physical Review E, 2016, 94, 023205.	0.8	15
144	Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry. Physics of Plasmas, 2017, 24, 062703.	0.7	15

#	Article	IF	CITATIONS
145	Relativistic laser hosing instability suppression and electron acceleration in a preformed plasma channel. Physical Review E, 2017, 95, 043207.	0.8	15
146	Nonlinear transition from convective to absolute Raman instability with trapped electrons and inflationary growth of reflectivity. Physics of Plasmas, 2018, 25, .	0.7	15
147	Efficient production of strong magnetic fields from ultraintense ultrashort laser pulse with capacitor-coil target. Physics of Plasmas, 2018, 25, 083111.	0.7	15
148	Unified decomposition method to study Rayleigh-Taylor instability in liquids and solids. Physical Review E, 2018, 97, 063109.	0.8	15
149	Laser hohlraum coupling efficiency on the Shenguang II facility. Physics of Plasmas, 2002, 9, 4744-4748.	0.7	14
150	Threshold for laser driven block ignition for fusion energy from hydrogen boron-11. Laser and Particle Beams, 2009, 27, 201-206.	0.4	14
151	Cylindrical effects on Richtmyer-Meshkov instability for arbitrary Atwood numbers in weakly nonlinear regime. Physics of Plasmas, 2012, 19, 072108.	0.7	14
152	Transport properties of dense deuterium-tritium plasmas. Physical Review E, 2013, 88, 013106.	0.8	14
153	Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction. Physical Review E, 2014, 89, 013107.	0.8	14
154	Ion acceleration enhanced by target ablation. Physics of Plasmas, 2015, 22, .	0.7	14
155	Near-diffraction-limited laser focusing with a near-critical density plasma lens. Optics Letters, 2016, 41, 139.	1.7	14
156	Electrostatic capacitance-type acceleration of ions with an intense few-cycle laser pulse. Applied Physics Letters, 2019, 114, .	1.5	14
157	Spatial chaos and patterns in laser-produced plasmas. Physical Review E, 1994, 49, 4417-4424.	0.8	13
158	Periodic and solitary waves of the cubic–quintic nonlinear Schrödinger equation. Journal of Plasma Physics, 2004, 70, 415-429.	0.7	13
159	Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses. Physics of Plasmas, 2011, 18, .	0.7	13
160	Transition from convective to absolute Raman instability via the longitudinal relativistic effect by using Vlasov-Maxwell simulations. Physics of Plasmas, 2018, 25, .	0.7	13
161	Production of 100-TW single attosecond x-ray pulse. Optica, 2020, 7, 355.	4.8	13
162	Guiding and confining fast electrons by transient electric and magnetic fields with a plasma inverse cone. Physics of Plasmas, 2009, 16, .	0.7	12

#	Article	IF	CITATIONS
163	Breather-like penetration of ultrashort linearly polarized laser into over-dense plasmas. Physics of Plasmas, 2013, 20, .	0.7	12
164	Self-shaping of a relativistic elliptically Gaussian laser beam in underdense plasmas. Laser and Particle Beams, 2015, 33, 347-353.	0.4	12
165	Particle-in-cell simulation of transport and energy deposition of intense proton beams in solid-state materials. Physical Review E, 2019, 100, 013208.	0.8	12
166	Proton beams from intense laser-solid interaction: Effects of the target materials. Matter and Radiation at Extremes, 2020, 5, .	1.5	12
167	Particle-in-cell simulation method for macroscopic degenerate plasmas. Physical Review E, 2020, 102, 033312.	0.8	12
168	Ion wave breaking acceleration. Physical Review Accelerators and Beams, 2016, 19, .	0.6	12
169	A theoretical model for a spontaneous magnetic field in intense laser plasma interaction. Physics of Plasmas, 2003, 10, 4166-4168.	0.7	11
170	MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS Astrophysical Journal, 2015, 815, 46.	· 1.6	11
171	The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas. Plasma Physics and Controlled Fusion, 2017, 59, 065004.	0.9	11
172	Ultraintense laser absorption and Î ³ -ray synchrotron radiation in near critical density plasmas. Physics of Plasmas, 2017, 24, 043111.	0.7	11
173	Enhancing the electron acceleration by a circularly polarized laser interaction with a cone-target with an external longitudinal magnetic field. Physics of Plasmas, 2017, 24, 033103.	0.7	11
174	Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment. New Journal of Physics, 2017, 19, 033034.	1.2	11
175	Spatiotemporal complexity of the cubic-quintic nonlinear Schrodinger equation. Journal of Physics A, 1993, 26, 4123-4133.	1.6	10
176	Stimulated backward Brillouin scattering in two ion-species plasmas. Physics of Plasmas, 2011, 18, 032705.	0.7	10
177	Efficient laser absorption and enhanced electron yield in the laser-target interaction by using a cone-nanolayer target. Physics of Plasmas, 2011, 18, .	0.7	10
178	Effects of the background plasma temperature on the current filamentation instability. Physics of Plasmas, 2013, 20, 032113.	0.7	10
179	Advances in the national inertial fusion program of China. EPJ Web of Conferences, 2013, 59, 01009.	0.1	10
180	Indirect-drive ablative Rayleigh-Taylor growth experiments on the Shenguang-II laser facility. Physics of Plasmas, 2014, 21, 042707.	0.7	10

#	Article	IF	CITATIONS
181	Study of strong enhancement of synchrotron radiation via surface plasma waves excitation by particle-in-cell simulations. Applied Physics Letters, 2015, 107, .	1.5	10
182	Physical studies of fast ignition in China. Plasma Physics and Controlled Fusion, 2015, 57, 064003.	0.9	10
183	Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model. Physics of Plasmas, 2016, 23, .	0.7	10
184	Intermittency caused by compressibility: aÂLagrangian study. Journal of Fluid Mechanics, 2016, 786, .	1.4	10
185	Characterization of magnetic reconnection in the high-energy-density regime. Physical Review E, 2016, 93, 033206.	0.8	10
186	Weakly nonlinear multi-mode Rayleigh-Taylor instability in two-dimensional spherical geometry. Physics of Plasmas, 2018, 25, 082713.	0.7	10
187	Stimulated Brillouin scattering behaviors in multi-ion species plasmas in high-temperature and high-density region. Physics of Plasmas, 2019, 26, .	0.7	10
188	Hugoniot of shocked liquid deuterium up to 300 GPa: Quantum molecular dynamic simulations. Journal of Applied Physics, 2010, 108, .	1.1	9
189	An ultra-short and TeV quasi-monoenergetic ion beam generation by laser wakefield accelerator in the snowplow regime. Europhysics Letters, 2011, 95, 55005.	0.7	9
190	The equation of state, electronic thermal conductivity, and opacity of hot dense deuterium-helium plasmas. Physics of Plasmas, 2012, 19, 042702.	0.7	9
191	Temporal evolution of bubble tip velocity in classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Physics of Plasmas, 2013, 20, .	0.7	9
192	Review of the current status of fast ignition research at the IAPCM. High Power Laser Science and Engineering, 2014, 2, .	2.0	9
193	Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas. New Journal of Physics, 2016, 18, 093029.	1.2	9
194	Comparison of the laser spot movement inside cylindrical and spherical hohlraums. Physics of Plasmas, 2017, 24, 072711.	0.7	9
195	Transition of backward stimulated Raman scattering from absolute to convective instability via density modulation. Physics of Plasmas, 2017, 24, .	0.7	9
196	Proton acceleration from laser interaction with a complex double-layer plasma target. Physics of Plasmas, 2018, 25, 123107.	0.7	9
197	Anti-Langmuir decay instability in Langmuir decay instability cascade. Physics of Plasmas, 2018, 25, 092112.	0.7	9
198	A pairwise nuclear fusion algorithm for particle-in-cell simulations: Weighted particles at relativistic energies. AIP Advances, 2021, 11, .	0.6	9

#	Article	IF	CITATIONS
199	Scaling laws for laser-driven ion acceleration from nanometer-scale ultrathin foils. Physical Review E, 2021, 104, 025210.	0.8	9
200	Intense laser-driven relativistic electron beams in a two-layer target. Physics of Plasmas, 2008, 15, .	0.7	8
201	Reshaping of intense laser pulse with a capillary. Physics of Plasmas, 2009, 16, 093109.	0.7	8
202	Focusing of intense laser pulse by a hollow cone. Laser and Particle Beams, 2010, 28, 293-298.	0.4	8
203	High-quality proton bunch from laser interaction with a gas-filled cone target. Physics of Plasmas, 2011, 18, .	0.7	8
204	Recent progress of laser driven particle acceleration at Peking University. Frontiers of Physics, 2013, 8, 577-584.	2.4	8
205	Thermophysical properties of hydrogen-helium mixtures: Re-examination of the mixing rules via quantum molecular dynamics simulations. Physical Review E, 2013, 88, 033106.	0.8	8
206	Numerical investigation of nonlinear ablative single-mode Rayleigh–Taylor instability in the presence of preheating. Physica Scripta, 2013, T155, 014018.	1.2	8
207	First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl. Physics of Plasmas, 2015, 22, 062707.	0.7	8
208	First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments. Scientific Reports, 2016, 6, 20623.	1.6	8
209	Reconstruction of Ge spatial distribution in ICF target using PIXE-T. Fusion Engineering and Design, 2016, 113, 43-50.	1.0	8
210	Intense attosecond pulses from laser-irradiated near-critical-density plasmas. Optics Express, 2017, 25, 29058.	1.7	8
211	Nonlinear ablative Rayleigh–Taylor growth experiments on Shenguang–II. Physics of Plasmas, 2020, 27, ·	0.7	8
212	Intense circularly polarized attosecond pulse generation from solid targets irradiated with a two-color linearly polarized laser. Physical Review A, 2020, 101, .	1.0	8
213	Equations of state of poly- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>α</mml:mi> -methylstyrene and polystyrene: First-principles calculations versus precision measurements. Physical Review B, 2021, 103</mml:math 	1.1	8
214	Pattern form and homoclinic structure in Zakharov equations. Physical Review A, 1992, 45, 6109-6112.	1.0	7
215	Physical processes of volume ignition and thermonuclear burn for high-gain inertial confinement fusion. AIP Conference Proceedings, 1994, , .	0.3	7
216	Nonlocal heat transport in laser-produced aluminum plasmas. Physics of Plasmas, 2010, 17, .	0.7	7

#	Article	IF	CITATIONS
217	Excitation of coherent terahertz radiation by stimulated Raman scatterings. Physics of Plasmas, 2010, 17, 024502.	0.7	7
218	Relativistic kinetic model for energy deposition of intense laser-driven electrons in fast ignition scenario. Physics of Plasmas, 2011, 18, .	0.7	7
219	Intense short-pulse lasers irradiating wire and hollow plasma fibers. Optics Letters, 2011, 36, 924.	1.7	7
220	Effect of preheating on the nonlinear evolution of the ablative Rayleigh-Taylor instability. Europhysics Letters, 2011, 96, 35002.	0.7	7
221	Research on ponderomotive driven Vlasov–Poisson system in electron acoustic wave parametric region. Physics of Plasmas, 2014, 21, 032107.	0.7	7
222	Self-generated magnetic dipoles in weakly magnetized beam-plasma system. Physical Review E, 2015, 91, 023107.	0.8	7
223	Tunable hard x-ray source from obliquely incident intense laser interacting with overdense solid targets. Physics of Plasmas, 2015, 22, 083301.	0.7	7
224	Surface plasma waves with their harmonics generation from pre-structured targets. Physics of Plasmas, 2016, 23, 023109.	0.7	7
225	The updated advancements of inertial confinement fusion program in China. Journal of Physics: Conference Series, 2016, 688, 012029.	0.3	7
226	Effects of viscosity and elasticity on the Richtmyer-Meshkov instability. Physical Review E, 2018, 98, .	0.8	7
227	Growth and saturation of stimulated Raman scattering in two overlapping laser beams. Physical Review E, 2020, 102, 013205.	0.8	7
228	Recent progress in matter in extreme states created by laser. Matter and Radiation at Extremes, 2022, 7,	1.5	7
229	Density effect on proton acceleration from carbon-containing high-density thin foils irradiated by high-intensity laser pulses. Journal of Applied Physics, 2007, 101, 103302.	1.1	6
230	Complex dynamics of femtosecond terawatt laser pulses in air. Applied Physics Letters, 2007, 91, 221114.	1.5	6
231	Nonlinear properties of relativistically intense laser in plasmas. Physics of Plasmas, 2007, 14, 112301.	0.7	6
232	Reducing current loss of laser-driven fast electron beams propagating in solid-density plasmas. Journal of Applied Physics, 2009, 105, 083311.	1.1	6
233	Intensity determination of superintense laser pulses via ionization fraction in the relativistic tunnelling regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 235601.	0.6	6
234	Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel. Physics of Plasmas, 2013, 20, 013107.	0.7	6

#	Article	IF	CITATIONS
235	Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation. Physics of Plasmas, 2013, 20, 092112.	0.7	6
236	Pattern dynamics and filamentation of femtosecond terawatt laser pulses in air including the higher-order Kerr effects. Physical Review E, 2013, 87, 053103.	0.8	6
237	A spherical shell target scheme for laser-driven neutron sources. Physics of Plasmas, 2015, 22, .	0.7	6
238	Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes. Physics of Plasmas, 2017, 24, 123101.	0.7	6
239	Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical and planar geometries. Physics of Plasmas, 2018, 25, 022701.	0.7	6
240	Enhancement of the surface emission at the fundamental frequency and the transmitted high-order harmonics by pre-structured targets. High Power Laser Science and Engineering, 2019, 7, .	2.0	6
241	Formation of relativistic electromagnetic solitons in over-dense plasmas. Physics of Plasmas, 2019, 26, 063107.	0.7	6
242	Auto-resonant stimulated Brillouin backscattering in supersonic flowing plasmas by fully kinetic Vlasov simulations. Plasma Physics and Controlled Fusion, 2019, 61, 085017.	0.9	6
243	First-principles method for x-ray Thomson scattering including both elastic and inelastic features in warm dense matter. Physical Review B, 2020, 102, .	1.1	6
244	Constraints on the thermal evolution of Earth's core from ab initio calculated transport properties of FeNi liquids. Earth and Planetary Science Letters, 2021, 562, 116852.	1.8	6
245	Improvement of laser absorption and control of particle acceleration by subwavelength nanowire target. Physics of Plasmas, 2020, 27, .	0.7	6
246	Anti-Stokes scattering and Stokes scattering of stimulated Brillouin scattering cascade in high-intensity laser–plasma interaction. Plasma Physics and Controlled Fusion, 2017, 59, 075007.	0.9	6
247	Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion. Scientia Sinica: Physica, Mechanica Et Astronomica, 2014, 44, 1-23.	0.2	6
248	Relative diffusion and formation of clumps in phase space of electrons in localized Langmuir fields. Physical Review A, 1991, 43, 1988-1993.	1.0	5
249	Dynamic properties and the two-point correlation function for electrons in localized coherent Langmuir fields. Physical Review A, 1992, 46, 3486-3492.	1.0	5
250	Direct-Drive Implosion Experiments on the SG-II Laser Facility. Journal of Fusion Energy, 2000, 19, 81-85.	0.5	5
251	Harmonic modulation instability and spatiotemporal chaos. Physical Review E, 2002, 66, 037201.	0.8	5
252	Fluid theory of magnetic-field generation in intense laser-plasma interaction. Europhysics Letters, 2005, 72, 955-961.	0.7	5

#	Article	IF	CITATIONS
253	Simulation of electron beam instabilities in collisionless plasmas. Journal of Plasma Physics, 2006, 72, 249.	0.7	5
254	Generation of strong magnetic fields from laser interaction with two-layer targets. Laser and Particle Beams, 2009, 27, 471-474.	0.4	5
255	Collective stopping power in laser driven fusion plasmas for block ignition. Laser and Particle Beams, 2010, 28, 3-9.	0.4	5
256	Energetic electron generation by magnetic reconnection in laboratory laser-plasma interactions. Journal of Plasma Physics, 2012, 78, 497-500.	0.7	5
257	Fast electron beam with manageable spotsize from laser interaction with the tailored cone-nanolayer target. Laser and Particle Beams, 2012, 30, 553-558.	0.4	5
258	Effect of plasma material on intense laser-driven beam electrons in solid foils. Laser and Particle Beams, 2012, 30, 111-116.	0.4	5
259	Preheat of radiative shock in double-shell ignition targets. Physics of Plasmas, 2013, 20, .	0.7	5
260	Instability-free ion acceleration by two laser pulses. European Physical Journal: Special Topics, 2014, 223, 1031-1035.	1.2	5
261	Efficient shock drift acceleration in the collision of two asymmetric pair plasma shells. Physics of Plasmas, 2017, 24, .	0.7	5
262	Intense single attosecond pulse generation from near-critical-density plasmas irradiated by a few-cycle laser pulse. Physics of Plasmas, 2018, 25, .	0.7	5
263	Coherent synchrotron emission in transmission with double foil target. Plasma Physics and Controlled Fusion, 2018, 60, 045005.	0.9	5
264	Identifying the quantum radiation reaction by using colliding ultraintense lasers in gases. Physical Review A, 2018, 98, .	1.0	5
265	Anomalous mix induced by a collisionless shock wave in an inertial confinement fusion hohlraum. Nuclear Fusion, 2019, 59, 106016.	1.6	5
266	All-optical generation of petawatt gamma radiation via inverse Compton scattering from laser interaction with tube target. Plasma Physics and Controlled Fusion, 2019, 61, 085002.	0.9	5
267	Kinetic Particle-in-cell Simulations of the Transport of Astrophysical Relativistic Jets in Magnetized Intergalactic Medium. Astrophysical Journal, 2019, 876, 2.	1.6	5
268	High-flux high-energy ion beam production from stable collisionless shock acceleration by intense petawatt-picosecond laser pulses. New Journal of Physics, 2019, 21, 033035.	1.2	5
269	Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry. Physics of Plasmas, 2019, 26, .	0.7	5
270	Stopping power of hot dense deuterium-tritium plasmas mixed with impurities to charged particles. Physical Review E, 2020, 101, 053209.	0.8	5

#	Article	IF	CITATIONS
271	Direct generation of relativistic isolated attosecond pulses in transmission from laser-driven plasmas. Optics Letters, 2021, 46, 1285.	1.7	5
272	Generation of relativistic vortex laser beams by spiral shaped plasma. Physical Review Research, 2020, 2, .	1.3	5
273	Absolute stimulated Brillouin side scattering in an inhomogeneous flowing plasma. Physical Review E, 2021, 104, 065203.	0.8	5
274	Suprathermal electrons from the anti-Stokes Langmuir decay instability cascade. Physical Review E, 2022, 105, 045208.	0.8	5
275	Modified formula of nonlocal electron transport in a laser-produced plasma. Physical Review E, 1994, 50, 443-447.	0.8	4
276	Instability of relativistic electron beam with strong magnetic field. Science Bulletin, 2000, 45, 18-23.	1.7	4
277	Generation of Nonlinear Force Driven Blocks from Skin Layer Interaction of Petawatt-Picosecond Laser Pulses for ICF. Plasma Science and Technology, 2004, 6, 2172-2178.	0.7	4
278	Plasma blocks from nonlinear force generated skin layer acceleration for ignition of a fusion flame in nearly uncompressed solid DT. European Physical Journal Special Topics, 2006, 133, 219-222.	0.2	4
279	Autofocused, enhanced proton acceleration from a nanometer-scale bulged foil. Physics of Plasmas, 2010, 17, .	0.7	4
280	Relative importance of mega electronvolt-electron energy deposition by collisions and field effects in fast ignition. Physics of Plasmas, 2012, 19, .	0.7	4
281	Design of an Indirect-Drive Pulse Shape for â^¼1.6 MJ Inertial Confinement Fusion Ignition Capsules. Chinese Physics Letters, 2014, 31, 045201.	1.3	4
282	Enhancement of proton acceleration by a right-handed circularly polarized laser interaction with a cone target exposed to a longitudinal magnetic field. Physics of Plasmas, 2017, 24, .	0.7	4
283	Monoenergetic ion beam acceleration from transversely confined near-critical plasmas by intense laser pulses. Physics of Plasmas, 2017, 24, .	0.7	4
284	Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas. Plasma Physics and Controlled Fusion, 2017, 59, 085007.	0.9	4
285	Nonlinear saturation of Rayleigh-Taylor instability in a finite-thickness fluid layer. Physics of Plasmas, 2017, 24, 112708.	0.7	4
286	Attosecond light pulses generation along the target surface driven by obliquely-incident lasers. Physics of Plasmas, 2017, 24, .	0.7	4
287	The interplay between the kinetic nonlinear frequency shift and the flowing gradient in stimulated Brillouin scattering. Plasma Physics and Controlled Fusion, 2018, 60, 025016.	0.9	4
288	Thin shell model for the nonlinear fluid instability of cylindrical shells. Physics of Plasmas, 2018, 25, 092703.	0.7	4

#	Article	IF	CITATIONS
289	Electron shock-surfing acceleration in the presence of magnetic field. Physics of Plasmas, 2018, 25, .	0.7	4
290	All-optical cascaded ion acceleration in segmented tubes driven by multiple independent laser pulses. Plasma Physics and Controlled Fusion, 2019, 61, 115005.	0.9	4
291	Burst behavior due to the quasimode excited by stimulated Brillouin scattering in high-intensity laser–plasma interactions. High Power Laser Science and Engineering, 2019, 7, .	2.0	4
292	Manipulating laser-driven proton acceleration with tailored target density profile. Plasma Physics and Controlled Fusion, 2020, 62, 085008.	0.9	4
293	Growth rate and gain of stimulated Brillouin scattering considering nonlinear Landau damping due to particle trapping. Plasma Physics and Controlled Fusion, 2020, 62, 045013.	0.9	4
294	Enhanced Proton Acceleration from Laser Interaction with a Tailored Nanowire Target. Applied Sciences (Switzerland), 2022, 12, 1153.	1.3	4
295	Magnetic field generated by ionization front produced by intense laser radiating gas. Physics of Plasmas, 1999, 6, 2954-2956.	0.7	3
296	Pattern dynamics and spatiotemporal chaos in the conserved Zakharov equations. Physica A: Statistical Mechanics and Its Applications, 2000, 288, 338-343.	1.2	3
297	Hierarchical Structures in Spatially Extended Systems. International Journal of Modern Physics B, 2003, 17, 4139-4148.	1.0	3
298	Interaction of short-pulse ultrarelativistic electron bunch with plasmas. Europhysics Letters, 2007, 79, 35001.	0.7	3
299	Electron acceleration by the self-generated magnetic field of multiple laser pulses in plasma. Physica Scripta, 2007, 75, 340-344.	1.2	3
300	Stochastic heating and acceleration of electrons by high-intensity lasers in inhomogeneous plasmas. Physica Scripta, 2008, 77, 045502.	1.2	3
301	lon jet generation in the ultraintense laser interactions with rear-side concave target. Laser and Particle Beams, 2010, 28, 351-359.	0.4	3
302	Hot electron transport and heating in dense plasma core by hollow guiding. Laser and Particle Beams, 2010, 28, 563-570.	0.4	3
303	Multiple acoustic modes stimulated Brillouin scattering in hydrogen plasmas. Plasma Physics and Controlled Fusion, 2012, 54, 095004.	0.9	3
304	First-Principles Calculations of Shocked Fluid Helium in Partially Ionized Region. Communications in Computational Physics, 2012, 12, 1121-1128.	0.7	3
305	Effects of higher-order Kerr nonlinearity and plasma diffraction on multiple filamentation of ultrashort laser pulses in air. Physics of Plasmas, 2013, 20, 072111.	0.7	3
306	Kinetic model for energy deposition in fast ignition. EPJ Web of Conferences, 2013, 59, 05021.	0.1	3

#	Article	IF	CITATIONS
307	Effect of inner-surface roughness of conical target on laser absorption and fast electron generation. Chinese Physics B, 2014, 23, 055202.	0.7	3
308	Relativistic Vlasov code development for high energy density plasmas. European Physical Journal D, 2014, 68, 1.	0.6	3
309	Magnetic reconnection in the high-energy density regime. Plasma Physics and Controlled Fusion, 2017, 59, 064002.	0.9	3
310	Coupling between a laser and a prestructured target with an arbitrary structure period. Physical Review E, 2018, 98, .	0.8	3
311	Resonance-like enhancement in high-order above threshold ionization of atoms and molecules in intense laser fields. Optics Express, 2018, 26, 13012.	1.7	3
312	Improvement of proton acceleration via collisionless shock acceleration by laser-foil interaction with an external magnetic field. Physics of Plasmas, 2019, 26, .	0.7	3
313	Saturation of stimulated Raman backscattering due to beam plasma instability induced by trapped electrons. Plasma Physics and Controlled Fusion, 2020, 62, 075009.	0.9	3
314	Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers*. Chinese Physics B, 2020, 29, 095202.	0.7	3
315	Coupling effects and thin-shell corrections for surface instabilities of cylindrical fluid shells. Physical Review E, 2020, 101, 023108.	0.8	3
316	Interaction features of two ultra-intense laser pulses self-trapped in underdense plasmas. AIP Advances, 2020, 10, 025313.	0.6	3
317	The three-dimensional weakly nonlinear Rayleigh–Taylor instability in spherical geometry. Physics of Plasmas, 2020, 27, 022707.	0.7	3
318	Vortex laser beam generation from laser interaction with azimuthal plasma phase slab at relativistic intensities. Physical Review E, 2021, 103, 023204.	0.8	3
319	Dynamics of particles near the surface of a medium under ultra-strong shocks. Matter and Radiation at Extremes, 2021, 6, .	1.5	3
320	Advancing the study of hybrid-drive inertial fusion ignition and high energy density physics - Teller medal lecture at IFSA2019. High Energy Density Physics, 2020, 36, 100804.	0.4	3
321	Reducing reflectivity of stimulated Raman scattering by discretely changing phase of incident light in inertial fusion plasmas. Physica Scripta, 2021, 96, 125634.	1.2	3
322	Ponderomotive force is unmagnetized Vlasov plasma. Plasma Physics and Controlled Fusion, 1993, 35, 291-299.	0.9	2
323	Characterization of Pattern Formation from Modulation Instability in the Cubic SchrĶdinger Equation. Chinese Physics Letters, 1998, 15, 659-661.	1.3	2
324	Bursting behaviours in cascaded stimulated Brillouin scattering. Chinese Physics B, 2012, 21, 015202.	0.7	2

#	Article	IF	CITATIONS
325	Propagation of femtosecond terawatt laser pulses in N2 gas including higher-order Kerr effects. AIP Advances, 2012, 2, 042190.	0.6	2
326	Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel. Plasma Science and Technology, 2013, 15, 420-424.	0.7	2
327	Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating. Plasma Science and Technology, 2013, 15, 961-968.	0.7	2
328	Anomalous-plasmoid-ejection-induced secondary magnetic reconnection: modeling solar flares and coronal mass ejections by laser–plasma experiments. High Power Laser Science and Engineering, 2013, 1, 11-16.	2.0	2
329	Camma-ray source through inverse Compton scattering in a thermal hohlraum. Laser and Particle Beams, 2013, 31, 607-611.	0.4	2
330	Study on magnetic field generation and electron collimation in overdense plasmas. EPJ Web of Conferences, 2013, 59, 17017.	0.1	2
331	Enhanced betatron radiation in strongly magnetized plasma. Physics of Plasmas, 2016, 23, 043115.	0.7	2
332	Magnetic X points disturbed by the in-plane electric fields. Physics of Plasmas, 2017, 24, .	0.7	2
333	Relay transport of relativistic flows in extreme magnetic fields of stars. Physics of Plasmas, 2017, 24, .	0.7	2
334	Energy shift between two relativistic laser pulses copropagating in plasmas. Physical Review A, 2017, 95, .	1.0	2
335	The baryon loading effect on relativistic astrophysical jet transport in the interstellar medium. New Journal of Physics, 2018, 20, 053060.	1.2	2
336	Stimulated Raman scattering instability of a left-handed circularly polarized laser in strongly axially magnetized plasmas. Physics of Plasmas, 2019, 26, .	0.7	2
337	Uniform warm dense matter formed by direct laser heating in the presence of external magnetic fields. Physical Review E, 2020, 101, 051202.	0.8	2
338	Suppression of stimulated Brillouin scattering by two perpendicular linear polarization lasers. AIP Advances, 2020, 10, 025123.	0.6	2
339	Ion kinetic effects on the evolution of Richtmyer–Meshkov instability and interfacial mix. New Journal of Physics, 2021, 23, 053010.	1.2	2
340	Reconnection rate and multi-scale relativistic magnetic reconnection driven by ultra-intense lasers. Plasma Physics and Controlled Fusion, 2021, 63, 085012.	0.9	2
341	Enhanced Proton Acceleration by Laser-Driven Collisionless Shock in the Near-Critical Density Target Embedding with Solid Nanolayers. Laser and Particle Beams, 2021, 2021, .	0.4	2
342	Obtaining Intense Attosecond Pulses in the Far Field from Relativistic Laser-Plasma Interactions. Physical Review Applied, 2021, 16, .	1.5	2

#	Article	IF	CITATIONS
343	Emissions of brilliant attosecond pulse in circular polarization by using inclined lasers. Physics of Plasmas, 2021, 28, 093105.	0.7	2
344	A moderate-gain ICF model from LTE ignition to non-LTE burn. AIP Conference Proceedings, 1996, , .	0.3	1
345	Pattern Formation and Competition in the Regime of the Conserved Cubic-Quintic Nonlinear SchrĶdinger Equation. Modern Physics Letters B, 1998, 12, 943-954.	1.0	1
346	A note on chaotic unimodal maps and applications. Chaos, 2006, 16, 033113.	1.0	1
347	Laser fusion driver development in SIOM and some related optical technology progress in China. , 2007, , .		1
348	Enhanced resonant acceleration of electrons from intense laser interaction with density-attenuating plasma. Physics of Plasmas, 2009, 16, 013104.	0.7	1
349	Equation of State for Shock Compressed Xenon in the Ionization Regime: ab Initio Study. Communications in Theoretical Physics, 2012, 58, 160-164.	1.1	1
350	Dynamics of ultra-intense circularly polarized solitons under inhomogeneous plasmas. Physics of Plasmas, 2013, 20, 063106.	0.7	1
351	Excitation of monochromatic and stable electron acoustic wave by two counter-propagating laser beams. New Journal of Physics, 2017, 19, 073038.	1.2	1
352	Potential terahertz radiation by mode conversion from two-color laser to surface plasma waves. AIP Advances, 2017, 7, .	0.6	1
353	Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser. Physics of Plasmas, 2018, 25, .	0.7	1
354	Dynamics of bond breaking and formation in polyethylene near shock front. Physical Review E, 2020, 102, 023207.	0.8	1
355	Second-shocked Hugoniot state of warm dense 6LiD: Quantum molecular dynamics simulations. Physics of Plasmas, 2020, 27, 082705.	0.7	1
356	Possible signals in differentiating the quantum radiation reaction from the classical one. Physical Review A, 2020, 101, .	1.0	1
357	The experimental investigation of the hohlraum energetics of two-entrance holes spherical hohlraum at the 100 kJ level laser facility. Physics of Plasmas, 2020, 27, 032702.	0.7	1
358	First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia*. Chinese Physics B, 2021, 30, 057102.	0.7	1
359	Enhanced proton acceleration using split intense femtosecond laser pulses. Plasma Physics and Controlled Fusion, 2021, 63, 085007.	0.9	1
360	The effects of plasma density-gradient on laser-driven transmitted emission. Plasma Physics and Controlled Fusion, 2020, 62, 115003.	0.9	1

#	Article	IF	CITATIONS
361	Stimulated Brillouin scattering enhanced by the stimulated Raman process near the quarter-critical density. Plasma Physics and Controlled Fusion, 2022, 64, 035002.	0.9	1
362	Divergence gating towards far-field isolated attosecond pulses. New Journal of Physics, 2022, 24, 033038.	1.2	1
363	Symbolic Dynamics and Topological Entropy of Henon Map. Communications in Theoretical Physics, 1991, 15, 1-8.	1.1	0
364	Chaotic Behavior of One-Dimensional Nonlinear Schrödinger Equations Involving High Order Saturable Nonlinear Terms. Communications in Theoretical Physics, 1993, 19, 231-242.	1.1	0
365	QUASIPERIODIC AND CHAOTIC BEHAVIOR ON ZAKHAROV EQUATIONS. Modern Physics Letters B, 1994, 08, 833-840.	1.0	0
366	The volume ignition for ICF ignition target. , 1997, , .		0
367	Ablation of nonlinear-force driven plasma blocks for fast igniter application. , 2006, , .		0
368	Stochastic heating and acceleration of electrons by high intensity lasers in inhomogeneous plasmas. Journal of Physics: Conference Series, 2008, 112, 042045.	0.3	0
369	Spatially controlling fast electron transport relevant to fast ignition. , 2009, , .		0
370	Weakly nonlinear analysis on the Kelvin-Helmholtz instability. Europhysics Letters, 2009, 87, 69901.	0.7	0
371	AMS Measurement of 36Cl with a Q3D Magnetic Spectrometer at CIAE. Plasma Science and Technology, 2012, 14, 543-547.	0.7	0
372	Table-top solar flares produced with laser driven magnetic reconnections. EPJ Web of Conferences, 2013, 59, 01010.	0.1	0
373	Collimated proton beams by ultra-short, ultra-intense laser pulse interaction with a foil–ramparts target. Laser and Particle Beams, 2015, 33, 765-771.	0.4	0
374	Laser imprint reduction for the critical-density foam buffered target driven by a relatively strong foot pulse at early stage of laser implosions. Physics of Plasmas, 2015, 22, 122707.	0.7	0
375	Applications of deuterium-tritium equation of state based on density functional theory in inertial confinement fusion. Physics of Plasmas, 2015, 22, 062708.	0.7	0
376	Study on the transport of a relativistic electron beam in plasmas. Journal of Physics: Conference Series, 2016, 688, 012007.	0.3	0
377	Stably propagating trains of attosecond electron bunches generated along the target back. Physics of Plasmas, 2016, 23, 093101.	0.7	0
378	Attenuation of electromagnetic waves by plasma-covered cavity. , 2016, , .		0

#	Article	IF	CITATIONS
379	Transport of moderately relativistic electron beam in dense plasma. Plasma Physics and Controlled Fusion, 2019, 61, 085009.	0.9	0
380	Trapping laser pulse between two foils and periodic generation of energetic electron beam. Physics of Plasmas, 2019, 26, 014502.	0.7	0
381	Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry. Chinese Physics Letters, 2020, 37, 075201.	1.3	Ο
382	Enhancement of brightness of high-order harmonics with elliptical polarization from near-critical density plasmas irradiated by an ultraintense laser pulse. Physics of Plasmas, 2020, 27, 083101.	0.7	0
383	Simulation of the Weakly Nonlinear Rayleigh-Taylor Instability in Spherical Geometry*. Chinese Physics Letters, 2020, 37, 055201.	1.3	0
384	Onset of inverse magnetic energy transfer in collisionless turbulent plasmas. Physical Review E, 2021, 104, 025204.	0.8	0
385	Test for descriptions of relativistic spin dynamics by using ultraintense lasers. Physical Review A, 2021, 104, .	1.0	0
386	Status of inertial confinement fusion research in China. European Physical Journal Special Topics, 2006, 133, 89-94.	0.2	0
387	High Intensity Laser Propagation though Overdense Plasmas. The Review of Laser Engineering, 2008, 36, 1139-1141.	0.0	0
388	Pattern dynamics and filamentation of relativistic laser pulses propagating in underdense plasmas. Scientia Sinica: Physica, Mechanica Et Astronomica, 2014, 44, 1344-1355.	0.2	0
389	Polarization conversion in the caviton driven by linearly polarized lasers. Physical Review E, 2022, 105, L023202.	0.8	0
390	Identify spin property of relativistic electrons in fully relativistic laser fields. New Journal of Physics, 2021, 23, 123043.	1.2	0
391	Ab initio calculations on thermal conductivity of Fe-Ni-O fluid: Constraints on the thermal evolution of Earth's core. Earth and Planetary Science Letters, 2022, 589, 117581.	1.8	Ο