Jakub Hagara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761697/publications.pdf

Version: 2024-02-01

1039406 1125271 21 180 9 13 citations h-index g-index papers 21 21 21 325 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Diffraction pattern of Bacillus subtilis CotY spore coat protein 2D crystals. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111425.	2.5	3
2	Polymorphism and structure formation in copper phthalocyanine thin films. Journal of Applied Crystallography, 2021, 54, 203-210.	1.9	6
3	Structure of Thin Films of [6] and [7]Phenacene and Impact of Potassium Deposition. Advanced Optical Materials, 2021, 9, 2002193.	3.6	3
4	A high-throughput assembly of beam-shaping channel-cut monochromators for laboratory high-resolution X-ray diffraction and small-angle X-ray scattering experiments. Journal of Applied Crystallography, 2021, 54, 730-738.	1.9	0
5	Early-stage growth observations of orientation-controlled vacuum-deposited naphthyl end-capped oligothiophenes. Physical Review Materials, 2021, 5, .	0.9	5
6	On the extraction of MoO x photothermally active nanoparticles by gel filtration from a byproduct of few-layer MoS2 exfoliation. Nanotechnology, 2021, 32, 045708.	1.3	2
7	Novel highly substituted thiophene-based n-type organic semiconductor: structural study, optical anisotropy and molecular control. CrystEngComm, 2020, 22, 7095-7103.	1.3	2
8	Surface-Controlled Crystal Alignment of Naphthyl End-Capped Oligothiophene on Graphene: Thin-Film Growth Studied by in Situ X-ray Diffraction. Langmuir, 2020, 36, 1898-1906.	1.6	10
9	Reorientation of π-conjugated molecules on few-layer MoS ₂ films. Physical Chemistry Chemical Physics, 2020, 22, 3097-3104.	1.3	11
10	Langmuir–Scheaffer Technique as a Method for Controlled Alignment of 1D Materials. Langmuir, 2020, 36, 4540-4547.	1.6	15
11	Tailored Langmuir–Schaefer Deposition of Few-Layer MoS ₂ Nanosheet Films for Electronic Applications. Langmuir, 2019, 35, 9802-9808.	1.6	22
12	Diindenoperylene thin-film structure on MoS2 monolayer. Applied Physics Letters, 2019, 114, .	1.5	14
13	Highly Crystalline MoS ₂ Thin Films Fabricated by Sulfurization. Physica Status Solidi (B): Basic Research, 2019, 256, 1900342.	0.7	4
14	Polarized Raman Reveals Alignment of Few-Layer MoS ₂ Films. Journal of Physical Chemistry C, 2019, 123, 29468-29475.	1.5	14
15	An elevated concentration of MoS2 lowers the efficacy of liquid-phase exfoliation and triggers the production of MoOx nanoparticles. Physical Chemistry Chemical Physics, 2019, 21, 12396-12405.	1.3	14
16	Exploiting the potential of beam-compressing channel-cut monochromators for laboratory high-resolution small-angle X-ray scattering experiments. Journal of Applied Crystallography, 2019, 52, 498-506.	1.9	4
17	Characterization of the chips generated by the nanomachining of germanium for X-ray crystal optics. International Journal of Advanced Manufacturing Technology, 2019, 102, 2757-2767.	1.5	3
18	Carbide-free one-zone sulfurization method grows thin MoS2 layers on polycrystalline CVD diamond. Scientific Reports, 2019, 9, 2001.	1.6	19

#	Article	IF	CITATIONS
19	Tuning the orientation of few-layer MoS ₂ films using one-zone sulfurization. RSC Advances, 2019, 9, 29645-29651.	1.7	24
20	Development of channel-cut X-ray optics for laboratory small-angle X-ray scattering setups. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e636-e636.	0.0	0
21	Finishing of Ge nanomachined surfaces for X-ray crystal optics. International Journal of Advanced Manufacturing Technology, 2018, 96, 3603-3617.	1.5	5