
Ryuichi Nishihama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761483/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diminished Auxin Signaling Triggers Cellular Reprogramming by Inducing a Regeneration Factor in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 384-400.	1.5	23
2	Improved clearing method contributes to deep imaging of plant organs. Communications Biology, 2022, 5, 12.	2.0	17
3	Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 1063-1077.	1.5	1
4	Fungal-Type Terpene Synthases in <i>Marchantia polymorpha</i> Are Involved in Sesquiterpene Biosynthesis in Oil Body Cells. Plant and Cell Physiology, 2021, 62, 528-537.	1.5	11
5	Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant Journal, 2021, 106, 326-335.	2.8	19
6	<i>Agrobacterium</i> -Mediated Transient Transformation of <i>Marchantia</i> Liverworts. Plant and Cell Physiology, 2021, 62, 1718-1727.	1.5	12
7	Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Current Biology, 2021, 31, 5522-5532.e7.	1.8	36
8	Regulation of the Poly(A) Status of Mitochondrial mRNA by Poly(A)-Specific Ribonuclease Is Conserved among Land Plants. Plant and Cell Physiology, 2020, 61, 470-480.	1.5	7
9	Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. Plant and Cell Physiology, 2020, 61, 631-643.	1.5	20
10	Design principles of a minimal auxin response system. Nature Plants, 2020, 6, 473-482.	4.7	71
11	Positional cues regulate dorsal organ formation in the liverwort Marchantia polymorpha. Journal of Plant Research, 2020, 133, 311-321.	1.2	28
12	Cytokinin signaling coordinates development of diverse organs in Marchantia polymorpha. Plant Signaling and Behavior, 2019, 14, 1668232.	1.2	8
13	A conserved regulatory mechanism mediates the convergent evolution of plant shoot lateral organs. PLoS Biology, 2019, 17, e3000560.	2.6	34
14	A <i>cis</i> â€acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO Journal, 2019, 38, .	3.5	59
15	Role of the Hof1–Cyk3 interaction in cleavage-furrow ingression and primary-septum formation during yeast cytokinesis. Molecular Biology of the Cell, 2018, 29, 597-609.	0.9	13
16	Generative Cell Specification Requires Transcription Factors Evolutionarily Conserved in Land Plants. Current Biology, 2018, 28, 479-486.e5.	1.8	87
17	An evolutionarily conserved NIMA-related kinase directs rhizoid tip growth in the basal land plant Marchantia polymorpha. Development (Cambridge), 2018, 145, .	1.2	30
18	Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. Journal of Experimental Botany, 2018, 69, 291-301.	2.4	53

Кушсні Nishihama

#	Article	IF	CITATIONS
19	Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nature Communications, 2018, 9, 5283.	5.8	54
20	Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS ONE, 2018, 13, e0205117.	1.1	141
21	ANGUSTIFOLIA contributes to the regulation of three-dimensional morphogenesis in the liverwort Marchantia polymorpha. Development (Cambridge), 2018, 145, .	1.2	23
22	Evolutionary origin of phytochrome responses and signaling in land plants. Plant, Cell and Environment, 2017, 40, 2502-2508.	2.8	26
23	Early evolution of the land plant circadian clock. New Phytologist, 2017, 216, 576-590.	3.5	100
24	Dynamic reorganization of the endomembrane system during spermatogenesis in Marchantia polymorpha. Journal of Plant Research, 2017, 130, 433-441.	1.2	19
25	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	13.5	973
26	The Roles of the Sole Activator-Type Auxin Response Factor in Pattern Formation of Marchantia polymorpha. Plant and Cell Physiology, 2017, 58, 1642-1651.	1.5	73
27	Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort <i>Marchantia polymorpha</i> . Plant Cell, 2016, 28, 1406-1421.	3.1	94
28	Transcriptional Framework of Male Gametogenesis in the Liverwort <i>Marchantia polymorpha</i> L Plant and Cell Physiology, 2016, 57, 325-338.	1.5	83
29	Profiling and Characterization of Small RNAs in the Liverwort, <i>Marchantia polymorpha</i> , Belonging to the First Diverged Land Plants. Plant and Cell Physiology, 2016, 57, 359-372.	1.5	68
30	Molecular Genetic Tools and Techniques for <i>Marchantia polymorpha</i> Research. Plant and Cell Physiology, 2016, 57, 262-270.	1.5	195
31	SNARE Molecules in <i>Marchantia polymorpha</i> : Unique and Conserved Features of the Membrane Fusion Machinery. Plant and Cell Physiology, 2016, 57, 307-324.	1.5	82
32	Conditional Gene Expression/Deletion Systems forMarchantia polymorphaUsing its Own Heat-Shock Promoter and Cre/loxP-Mediated Site-Specific Recombination. Plant and Cell Physiology, 2016, 57, 271-280.	1.5	49
33	Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genetics, 2015, 11, e1005084.	1.5	157
34	The carboxyl-terminal tail of the stalk of Arabidopsis NACK1/HINKEL kinesin is required for its localization to the cell plate formation site. Journal of Plant Research, 2015, 128, 327-336.	1.2	14
35	Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. Journal of Plant Research, 2015, 128, 407-421.	1.2	58
36	Diversification of histone H2A variants during plant evolution. Trends in Plant Science, 2015, 20, 419-425.	4.3	85

Кушсні Nishihama

#	Article	IF	CITATIONS
37	Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS ONE, 2015, 10, e0138876.	1.1	231
38	Phototropin Encoded by a Single-Copy Gene Mediates Chloroplast Photorelocation Movements in the Liverwort <i>Marchantia polymorpha</i> Â Â. Plant Physiology, 2014, 166, 411-427.	2.3	63
39	Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nature Communications, 2014, 5, 3668.	5.8	100
40	Evolutionary insights into photoregulation of the cell cycle in the green lineage. Current Opinion in Plant Biology, 2013, 16, 630-637.	3.5	21
41	Essential Role of the E3 Ubiquitin Ligase NOPPERABO1 in Schizogenous Intercellular Space Formation in the Liverwort <i>Marchantia polymorpha</i> Â. Plant Cell, 2013, 25, 4075-4084.	3.1	50
42	Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis. Journal of Cell Biology, 2013, 202, 311-329.	2.3	71
43	Targeting and functional mechanisms of the cytokinesis‑related F‑BAR protein Hof1 during the cell cycle. Molecular Biology of the Cell, 2013, 24, 1305-1320.	0.9	47
44	New insights into the phylogenetic distribution and evolutionary origins of the septins. Biological Chemistry, 2011, 392, 681-687.	1.2	93
45	Evidence that a septin diffusion barrier is dispensable for cytokinesis in budding yeast. Biological Chemistry, 2011, 392, 813-829.	1.2	71
46	Biphasic targeting and cleavage furrow ingression directed by the tail of a myosin II. Journal of Cell Biology, 2010, 191, 1333-1350.	2.3	99
47	The Anaphase-promoting Complex Promotes Actomyosin-Ring Disassembly during Cytokinesis in Yeast. Molecular Biology of the Cell, 2009, 20, 1201-1212.	0.9	33
48	Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in <i>S. cerevisiae</i> . Journal of Cell Biology, 2009, 185, 995-1012.	2.3	87
49	Control of 5â€FOA and 5â€FU resistance by <i>Saccharomyces cerevisiae YJL055W</i> . Yeast, 2008, 25, 155-160.	0.8	16
50	A Role for Very-Long-Chain Fatty Acids in Furrow Ingression during CytokinesisÂin Drosophila Spermatocytes. Current Biology, 2008, 18, 1426-1431.	1.8	82
51	Identification of Yeast IQGAP (Iqg1p) as an Anaphase-Promoting-Complex Substrate and Its Role in Actomyosin-Ring-Independent Cytokinesis. Molecular Biology of the Cell, 2007, 18, 5139-5153.	0.9	59
52	Mitotic Cyclins Stimulate the Activity of c-Myb-like Factors for Transactivation of G2/M Phase-specific Genes in Tobacco. Journal of Biological Chemistry, 2004, 279, 32979-32988.	1.6	113
53	Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogenerolB. Plant Journal, 2004, 38, 260-275.	2.8	74
54	NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes and Development, 2003, 17, 1055-1067.	2.7	175

Кушсні Nishihama

#	Article	IF	CITATIONS
55	Control of plant cytokinesis by an NPK1–mediated mitogen–activated protein kinase cascade. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 767-775.	1.8	11
56	Expansion of the Cell Plate in Plant Cytokinesis Requires a Kinesin-like Protein/MAPKKK Complex. Cell, 2002, 109, 87-99.	13.5	223
57	The NPK1 mitogen-activated protein kinase kinase kinase contains a functional nuclear localization signal at the binding site for the NACK1 kinesin-like protein. Plant Journal, 2002, 32, 789-798.	2.8	41
58	Expansion of the phragmoplast during plant cytokinesis: a MAPK pathway may MAP it out. Current Opinion in Plant Biology, 2001, 4, 507-512.	3.5	58
59	The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes and Development, 2001, 15, 352-363.	2.7	192
60	G2/M-Phase-Specific Transcription during the Plant Cell Cycle Is Mediated by c-Myb-Like Transcription Factors. Plant Cell, 2001, 13, 1891-1905.	3.1	150
61	The Expression Pattern of the Gene for NPK1 Protein Kinase Related to Mitogen-Activated Protein Kinase Kinase Kinase (MAPKKK) in a Tobacco Plant: Correlation with Cell Proliferation. Plant and Cell Physiology, 1998, 39, 690-700.	1.5	66
62	Cutting activates a 46-kilodalton protein kinase in plants Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8660-8664.	3.3	186
63	Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Molecular Genetics and Genomics, 1995, 247, 653-660.	2.4	63
64	Plant Homologues of Components of MAPK (Mitogen-Activated Protein Kinase) Signal Pathways in Yeast and Animal Cells. Plant and Cell Physiology, 1995, 36, 749-757.	1.5	70