Mohsen Niazian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761364/publications.pdf Version: 2024-02-01

MOHSEN NIAZIAN

#	Article	IF	CITATIONS
1	Application of genetics and biotechnology for improving medicinal plants. Planta, 2019, 249, 953-973.	3.2	112
2	Machine Learning for Plant Breeding and Biotechnology. Agriculture (Switzerland), 2020, 10, 436.	3.1	95
3	Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell, Tissue and Organ Culture, 2017, 130, 543-551.	2.3	67
4	Modeling the seed yield of Ajowan (Trachyspermum ammi L.) using artificial neural network and multiple linear regression models. Industrial Crops and Products, 2018, 117, 224-234.	5.2	66
5	In vitro-based doubled haploid production: recent improvements. Euphytica, 2020, 216, 1.	1.2	53
6	Genetic stability of regenerated plants via indirect somatic embryogenesis and indirect shoot regeneration of Carum copticum L Industrial Crops and Products, 2017, 97, 330-337.	5.2	49
7	Image Processing and Artificial Neural Network-Based Models to Measure and Predict Physical Properties of Embryogenic Callus and Number of Somatic Embryos in Ajowan (Trachyspermum ammi (L.)) Tj ETO	Qq12110.78	343 44 rgBT /
8	Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell, Tissue and Organ Culture, 2020, 142, 447-469.	2.3	43
9	Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon) Tj ETQq1 1 0.784314	4 rgBT /Ov 2.1	erlock 10 Tf 5 39
10	Modeling Oil Content of Sesame (<scp><i>Sesamum indicum</i></scp> L.) Using Artificial Neural Network and Multiple Linear Regression Approaches. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 283-297.	1.9	37
11	Tissue culture-based Agrobacterium-mediated and in planta transformation methods. Czech Journal of Genetics and Plant Breeding, 2017, 53, 133-143.	0.8	31
12	Agrobacterium-mediated genetic transformation of ajowan (Trachyspermum ammi (L) Sprague): an important industrial medicinal plant. Industrial Crops and Products, 2019, 132, 29-40.	5.2	27
13	Artificial neural network and multiple regression analysis models to predict essential oil content of ajowan (Carum copticum L.). Journal of Applied Research on Medicinal and Aromatic Plants, 2018, 9, 124-131.	1.5	24
14	Essential Oil Chemotype of Iranian Ajowan (Trachyspermum ammi L.). Journal of Essential Oil-bearing Plants: JEOP, 2018, 21, 273-276.	1.9	23
15	Essential Oil Yield and Agro-morphological Traits in Some Iranian Ecotypes of Ajowan (<i>Carum) Tj ETQq1 1 0.</i>	784314 rg 1.9	BT /Overlock
16	Modeling Agrobacterium-Mediated Gene Transformation of Tobacco (Nicotiana tabacum)—A Model Plant for Gene Transformation Studies. Frontiers in Plant Science, 2021, 12, 695110.	3.6	20
17	Betaine Aldehyde Dehydrogenase (BADH) vs. Flavodoxin (Fld): Two Important Genes for Enhancing Plants Stress Tolerance and Productivity. Frontiers in Plant Science, 2021, 12, 650215.	3.6	19
18	Interactive Effects of Nitrogen and Potassium Fertilizers on Quantitative-Qualitative Traits and Drought Tolerance Indices of Rainfed Wheat Cultivar. Agronomy, 2022, 12, 30.	3.0	14

Mohsen Niazian

#	Article	IF	CITATIONS
19	Traditional in vitro strategies for sustainable production of bioactive compounds and manipulation of metabolomic profile in medicinal, aromatic and ornamental plants. Planta, 2021, 254, 111.	3.2	13
20	In vitro chromosome doubling of African daisy, Gerbera jamesonii Bolus cv. Mini Red. Nucleus (India), 2020, 63, 59-65.	2.2	12
21	CRISPR/Cas9 in Planta Hairy Root Transformation: A Powerful Platform for Functional Analysis of Root Traits in Soybean. Plants, 2022, 11, 1044.	3.5	11
22	Application of Artificial Neural Networks Sensitivity Analysis for the Pre-Identification of Highly Significant Factors Influencing the Yield and Digestibility of Grassland Sward in the Climatic Conditions of Central Poland. Agronomy, 2022, 12, 1133.	3.0	11
23	Modeling the Essential Oil and Trans-Anethole Yield of Fennel (Foeniculum vulgare Mill. var. vulgare) by Application Artificial Neural Network and Multiple Linear Regression Methods. Agriculture (Świtzerland), 2021, 11, 1191.	3.1	10
24	Agronomic Performance of Rainfed Barley Genotypes under Different Tillage Systems in Highland Areas of Dryland Conditions. Agronomy, 2022, 12, 1070.	3.0	10
25	Comparative Analysis of Plant Growth-PromotingRhizobacteria (PGPR) and Chemical Fertilizers on Quantitative and Qualitative Characteristics of Rainfed Wheat. Agronomy, 2022, 12, 1524.	3.0	10
26	Perspectives on new opportunities for nano-enabled strategies for gene delivery to plants using nanoporous materials. Planta, 2021, 254, 83.	3.2	8
27	Assessment of general and specific combining abilities in doubled haploid lines of rapeseed (Brassica) Tj ETQq1 1	0.784314	ł rgBT /Overla
28	Methods for Chromosome Doubling. Methods in Molecular Biology, 2021, 2287, 127-148.	0.9	6
29	Integrative effects of stress- and stress tolerance-inducing elicitors on in vitro bioactive compounds of ajowan [Trachyspermum ammi (L.) Sprague] medicinal plant. Plant Cell, Tissue and Organ Culture, 2021, 146, 589-604.	2.3	4
30	Analysis of Resistance to Cercospora Leaf Spot and Bolting in Sugar Beet as Winter Crop Using Griffing's Diallel Method and GGE Biplot*. Journal of Sugar Beet Research, 2013, 50, 37-58.	0.3	3
31	Efficient Microspore Embryogenesis and Haploid Induction in Mutant Indica Rice (Oryza sativa L.) Cultivars. Journal of Plant Growth Regulation, 0, , .	5.1	2
32	Diallel Cross Analysis in Sugar Beet (Beta vulgaris L.): Identification of the Best Parents and Hybrids for Resistance to Bolting and Cercospora Leaf Spot in Sugar Beet Monogerm O-type Lines. American Journal of Experimental Agriculture, 2011, 1, 214-225.	0.2	1
33	Analysis of Resistance to Cercospora Leaf Spot and Bolting in Sugar Beet as Winter Crop Using Griffing's Diallel Method and GCE Biplot. Journal of Sugar Beet Research, 2012, 49, 103-123.	0.3	0
34	Comparative analysis of heterologous expressions of BADH and Fld genes in enhancing salinity and drought tolerance of the ajowan medicinal plant. Plant Cell, Tissue and Organ Culture, 0, , 1.	2.3	0