Margarita Darder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761138/publications.pdf

Version: 2024-02-01

87888 64796 6,731 109 38 79 citations g-index h-index papers 117 117 117 7202 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biopolymerâ°'Clay Nanocomposites Based on Chitosan Intercalated in Montmorillonite. Chemistry of Materials, 2003, 15, 3774-3780.	6.7	612
2	Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials. Advanced Materials, 2007, 19, 1309-1319.	21.0	593
3	Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 2010, 20, 9306.	6.7	296
4	Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 2010, 22, 323-336.	21.0	275
5	Bio-Nanocomposites Based on Layered Double Hydroxides. Chemistry of Materials, 2005, 17, 1969-1977.	6.7	261
6	Chitosan–clay nanocomposites: application as electrochemical sensors. Applied Clay Science, 2005, 28, 199-208.	5 . 2	261
7	Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. Journal of Materials Chemistry, 2010, 20, 9495.	6.7	233
8	Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 2005, 15, 3650.	6.7	218
9	Fibrous clays based bionanocomposites. Progress in Polymer Science, 2013, 38, 1392-1414.	24.7	209
10	Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chemical Society Reviews, 2011, 40, 801-828.	38.1	199
11	Microfibrous Chitosanâ^'Sepiolite Nanocomposites. Chemistry of Materials, 2006, 18, 1602-1610.	6.7	196
12	Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 2014, 463, 1-9.	5 . 2	193
13	Supported Graphene from Natural Resources: Easy Preparation and Applications. Advanced Materials, 2011, 23, 5250-5255.	21.0	149
14	Nanotechnology Responses to COVIDâ€19. Advanced Healthcare Materials, 2020, 9, e2000979.	7.6	128
15	Electrodeposition of Redox-Active Films of Dihydroxybenzaldehydes and Related Analogs and Their Electrocatalytic Activity toward NADH Oxidation. Analytical Chemistry, 1996, 68, 3135-3142.	6. 5	121
16	Dithiobissuccinimidyl Propionate as an Anchor for Assembling Peroxidases at Electrodes Surfaces and Its Application in a H2O2 Biosensor. Analytical Chemistry, 1999, 71, 5530-5537.	6.5	121
17	Polysaccharide–fibrous clay bionanocomposites. Applied Clay Science, 2014, 96, 2-8.	5. 2	100
18	Bio-organoclays Based on Phospholipids as Immobilization Hosts for Biological Species. Langmuir, 2010, 26, 5217-5225.	3. 5	89

#	Article	IF	CITATIONS
19	Relevance of polymer– and biopolymer–clay nanocomposites in electrochemical and electroanalytical applications. Thin Solid Films, 2006, 495, 104-112.	1.8	78
20	Caramel–clay nanocomposites. Journal of Materials Chemistry, 2005, 15, 3913.	6.7	74
21	Bionanocomposites as New Carriers for Influenza Vaccines. Advanced Materials, 2009, 21, 4167-4171.	21.0	69
22	Clay-supported graphene materials: application to hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 18635.	2.8	69
23	Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films, 2006, 495, 321-326.	1.8	66
24	Ultrasound assisted preparation of chitosan–vermiculite bionanocomposite foams for cadmium uptake. Applied Clay Science, 2016, 130, 40-49.	5.2	60
25	Multifunctional materials based on graphene-like/sepiolite nanocomposites. Applied Clay Science, 2010, 47, 203-211.	5.2	59
26	Functionalized Carbon–Silicates from Caramel–Sepiolite Nanocomposites. Angewandte Chemie - International Edition, 2007, 46, 923-925.	13.8	58
27	Progress in Bionanocomposite and Bioinspired Foams. Advanced Materials, 2011, 23, 5262-5267.	21.0	58
28	Analytical strategies for amperometric biosensors based on chemically modified electrodes. Biosensors and Bioelectronics, 1998, 13, 319-332.	10.1	57
29	Gelatin-Clay Bio-Nanocomposites: Structural and Functional Properties as Advanced Materials. Journal of Nanoscience and Nanotechnology, 2009, 9, 221-229.	0.9	52
30	Phospholipidâ€"Sepiolite Biomimetic Interfaces for the Immobilization of Enzymes. ACS Applied Materials & Lamp; Interfaces, 2011, 3, 4339-4348.	8.0	51
31	An overview of clay-polymer nanocomposites containing bioactive compounds for food packaging applications. Applied Clay Science, 2022, 216, 106335.	5.2	50
32	Functional Hybrid Nanopaper by Assembling Nanofibers of Cellulose and Sepiolite. Advanced Functional Materials, 2018, 28, 1703048.	14.9	49
33	Zein-Fibrous Clays Biohybrid Materials. European Journal of Inorganic Chemistry, 2012, 2012, 5216-5224.	2.0	45
34	Composite Nanoarchitectonics: Alginate Beads Encapsulating Sepiolite/Magnetite/Prussian Blue for Removal of Cesium Ions from Water. Bulletin of the Chemical Society of Japan, 2021, 94, 122-132.	3.2	44
35	Intercalation of metformin into montmorillonite. Dalton Transactions, 2018, 47, 3185-3192.	3.3	43
36	XPS and AFM Characterization of Oligonucleotides Immobilized on Gold Substrates. Langmuir, 2003, 19, 6230-6235.	3.5	42

#	Article	IF	Citations
37	Multifunctional Porous Materials Through Ferrofluids. Advanced Materials, 2011, 23, 5224-5228.	21.0	42
38	Bionanocomposite foams based on the assembly of starch and alginate with sepiolite fibrous clay. Carbohydrate Polymers, 2017, 157, 1933-1939.	10.2	40
39	Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. RSC Advances, 2014, 4, 35415.	3.6	39
40	Electrochemically Triggered Reaction of a Surface-Confined Reagent:  Mechanistic and EQCM Characterization of Redox-Active Self-Assembling Monolayers Derived from 5,5â€~-Dithiobis(2-nitrobenzoic acid) and Related Materials. Langmuir, 1999, 15, 127-134.	3.5	37
41	Bionanocomposites containing magnetic graphite as potential systems for drug delivery. International Journal of Pharmaceutics, 2014, 477, 553-563.	5.2	36
42	Bio-Nanohybrids Based on Layered Inorganic Solids: Gelatin Nanocomposites. Current Nanoscience, 2006, 2, 231-241.	1.2	36
43	Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal. Dalton Transactions, 2014, 43, 10512-10520.	3.3	35
44	Functional Carboxymethylcellulose/Zein Bionanocomposite Films Based on Neomycin Supported on Sepiolite or Montmorillonite Clays. ACS Omega, 2018, 3, 13538-13550.	3.5	35
45	Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. Journal of Materials Chemistry A, 2014, 2, 1391-1399.	10.3	33
46	Alginate bionanocomposite films containing sepiolite modified with polyphenols from myrtle berries extract. International Journal of Biological Macromolecules, 2020, 165, 2079-2088.	7.5	33
47	Peroxidase enzyme electrodes as nitric oxide biosensors. Analytica Chimica Acta, 2000, 403, 1-9.	5.4	32
48	Biosensors Based on Membrane-Bound Enzymes Immobilized in a 5-(Octyldithio)-2-nitrobenzoic Acid Layer on Gold Electrodes. Analytical Chemistry, 2000, 72, 3784-3792.	6.5	32
49	Design and preparation of bionanocomposites based on layered solids with functional and structural properties. Materials Science and Technology, 2008, 24, 1100-1110.	1.6	32
50	The Meeting Point of Carbonaceous Materials and Clays: Toward a New Generation of Functional Composites. Advanced Functional Materials, 2018, 28, 1704323.	14.9	32
51	Toward a green way for the chemical production of supported graphenes using porous solids. Journal of Materials Chemistry A, 2014, 2, 2009-2017.	10.3	31
52	Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 2021, 417, 126068.	12.4	31
53	Lipidâ€Based Bioâ€Nanohybrids for Functional Stabilisation of Influenza Vaccines. European Journal of Inorganic Chemistry, 2012, 2012, 5186-5191.	2.0	30
54	Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. Journal of Applied Polymer Science, 2016, 133, .	2.6	29

#	Article	IF	Citations
55	Use of biopolymers as oriented supports for the stabilization of different polymorphs of biomineralized calcium carbonate with complex shape. Journal of Crystal Growth, 2008, 310, 5331-5340.	1.5	27
56	Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. Advanced Functional Materials, 2013, 23, 254-262.	14.9	27
57	Graphene-Clay Based Nanomaterials for Clean Energy Storage. Science of Advanced Materials, 2014, 6, 151-158.	0.7	27
58	Amino-polysiloxane hybrid materials as carbon composite electrodes for potentiometric detection of anions. Journal of Materials Chemistry, 2005, 15, 3844.	6.7	26
59	Full-field photonic biosensors based on tunable bio-doped sol–gel glasses. Lab on A Chip, 2008, 8, 1185.	6.0	26
60	Chitosan and pectin core–shell beads encapsulating metformin–clay intercalation compounds for controlled delivery. New Journal of Chemistry, 2020, 44, 10102-10110.	2.8	26
61	Algae–silica systems as functional hybrid materials. Journal of Materials Chemistry, 2010, 20, 9362-9369.	6.7	25
62	Hierarchically structured bioactive foams based on polyvinyl alcohol–sepiolite nanocomposites. Journal of Materials Chemistry B, 2013, 1, 2911.	5.8	25
63	Recent Advances on Fibrous Clay-Based Nanocomposites. Advances in Polymer Science, 2014, , 39-86.	0.8	25
64	Building Up Functional Bionanocomposites from the Assembly of Clays and Biopolymers. Chemical Record, 2018, 18, 696-712.	5.8	25
65	Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces. Beilstein Journal of Nanotechnology, 2016, 7, 1772-1782.	2.8	23
66	Optical Biosensor Based On Hollow Integrated Waveguides. Analytical Chemistry, 2008, 80, 3498-3501.	6.5	22
67	Thiol-Functionalized Gold Surfaces as a Strategy to Induce Order in Membrane-Bound Enzyme Immobilization. Nano Letters, 2002, 2, 577-582.	9.1	21
68	Patterning High-Aspect-Ratio Sol–Gel Structures by Microtransfer Molding. Chemistry of Materials, 2008, 20, 2662-2668.	6.7	21
69	Smectite-chitosan-based electrodes in electrochemical detection of phenol and its derivatives. Applied Clay Science, 2016, 124-125, 62-68.	5.2	21
70	Amperometric Sensors Based on Mercaptopyridineâ^'Montmorillonite Intercalation Compounds. Chemistry of Materials, 2005, 17, 708-715.	6.7	20
71	Novel magnetic organic–inorganic nanostructured materials. Journal of Materials Chemistry, 2007, 17, 4233.	6.7	20
72	Bio-nanocomposites by Assembling of Gelatin and Layered Perovskite Mixed Oxides. Journal of Nanoscience and Nanotechnology, 2006, 6, 1602-1610.	0.9	19

#	Article	IF	Citations
73	Multisensor device based on Case-Based Reasoning (CBR) for monitoring nutrient solutions in fertigation. Sensors and Actuators B: Chemical, 2009, 135, 530-536.	7.8	19
74	Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides. Beilstein Journal of Nanotechnology, 2019, 10, 1679-1690.	2.8	19
7 5	Clay-based hybrids for controlled release of 7-azaindole derivatives as neuroprotective drugs in the treatment of Alzheimer's disease. Applied Clay Science, 2020, 189, 105541.	5.2	18
76	Ultrasound-assisted preparation of nanocomposites based on fibrous clay minerals and nanocellulose from microcrystalline cellulose. Applied Clay Science, 2020, 189, 105538.	5.2	18
77	Fibrous Clay Mineral–Polymer Nanocomposites. Developments in Clay Science, 2013, 5, 721-741.	0.5	17
78	Cellulose Nanofibers from a Dutch Elm Disease-Resistant Ulmus minor Clone. Polymers, 2020, 12, 2450.	4.5	17
79	Hybrid materials based on lichen–polysiloxane matrices: application as electrochemical sensors. Journal of Materials Chemistry, 2002, 12, 3660-3664.	6.7	16
80	CLAY-BASED BIOHYBRID MATERIALS FOR BIOMEDICAL AND PHARMACEUTICAL APPLICATIONS. Clays and Clay Minerals, 2019, 67, 44-58.	1.3	16
81	Cellulose-based biomaterials integrated with copper-cystine hybrid structures as catalysts for nitric oxide generation. Materials Science and Engineering C, 2020, 108, 110369.	7. 3	16
82	Theoretical and experimental investigation on the intercalation of metformin into layered clay minerals. Applied Clay Science, 2020, 186, 105418.	5.2	15
83	Conducting macroporous carbon foams derived from microwave-generated caramel/silica gel intermediates. Journal of Materials Science, 2017, 52, 11269-11281.	3.7	15
84	Polymer-Clay Nanocomposites as Precursors of Nanostructured Carbon Materials for Electrochemical Devices: Templating Effect of Clays. Journal of Nanoscience and Nanotechnology, 2008, 8, 1741-1750.	0.9	15
85	Study of chemical modifiers for the determination of chromium in biological materials by tungsten coil electrothermal atomic absorption spectrometry. Fresenius' Journal of Analytical Chemistry, 1999, 364, 273-278.	1.5	14
86	Editorial [Trends in Bio-Hybrid Nanostructured Materials Guest Editors: Eduardo Ruiz-Hitzky and Margarita Darder]. Current Nanoscience, 2006, 2, 153-153.	1.2	12
87	Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Frontiers in Chemistry, 2021, 9, 733105.	3.6	12
88	PROGRESS IN BIONANOCOMPOSITE MATERIALS. Annual Review of Nano Research, 2009, , 149-189.	0.2	11
89	One-Step Patterning of Hybrid Xerogel Materials for the Fabrication of Disposable Solid-State Light Emitters. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5029-5037.	8.0	9
90	Advanced biohybrid materials based on nanoclays for biomedical applications. Proceedings of SPIE, 2012, , .	0.8	9

#	Article	IF	Citations
91	Concentration Dependence of Aggregate Formation upon Adsorption of 5-(Octyldithio)-2-nitrobenzoic Acid on Gold Electrodes. Langmuir, 2000, 16, 9804-9811.	3.5	8
92	Hollow waveguide-based full-field absorbance biosensor. Sensors and Actuators B: Chemical, 2009, 139, 143-149.	7.8	8
93	Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 2016, 51, 529-538.	0.6	8
94	Silacrown Ethers-Clay Intercalation Materials: Application in Potentiometric Sensors for Detection of Alkali-Ions. Bulletin of the Chemical Society of Japan, 2018, 91, 608-616.	3.2	8
95	Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control. International Journal of Environmental Research and Public Health, 2018, 15, 844.	2.6	8
96	Tailoring the properties of nanocellulose-sepiolite hybrid nanopapers by varying the nanocellulose type and clay content. Cellulose, 2022, 29, 5265-5287.	4.9	8
97	Chitosan-Clay Bio-Nanocomposites. Green Energy and Technology, 2012, , 365-391.	0.6	7
98	Zein-layered hydroxide biohybrids: strategies of synthesis and characterization. Materials, 2020, 13, 825.	2.9	7
99	Functional Nanocomposites Based on Fibrous Clays. RSC Smart Materials, 2016, , 1-53.	0.1	6
100	Efficient and Ecological Removal of Anionic Pollutants by Cationic Starch-Clay Bionanocomposites. Science of Advanced Materials, 2013, 5, 994-1005.	0.7	6
101	Research and Patents on Coronavirus and COVID-19: A Review. Recent Patents on Nanotechnology, 2020, 14, 328-350.	1.3	6
102	Silacrown modified xerogels as functional hybrid materials for carbon composite electrodes. Comptes Rendus Chimie, 2010, 13, 227-236.	0.5	5
103	Gentamicin-Montmorillonite Intercalation Compounds as an Active Component of Hydroxypropylmethylcellulose Bionanocomposite Films with Antimicrobial Properties. Clays and Clay Minerals, 2021, 69, 576-588.	1.3	5
104	Gelatine-based bio-nanocomposites., 2011,, 209-233.		4
105	Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair. Bio-Medical Materials and Engineering, 2013, 23, 405-421.	0.6	4
106	Gelation under dynamic conditions: A strategy for in vitro cell ordering. Journal of Materials Science: Materials in Medicine, 2006, 17, 795-802.	3.6	2
107	Bionanocomposites Based on Clay Minerals. , 0, , 233-257.		2
108	Bionanocomposites based on layered double hydroxides as drug delivery systems. , 2012, , .		0

#	Article	IF	CITATIONS
109	Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays. Journal of Nanoscience and Nanotechnology, 2008, 8, 1741-50.	0.9	0