
Knut Teigen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761087/publications.pdf Version: 2024-02-01

KNUT TEICEN

#	Article	IF	CITATIONS
1	Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nature Communications, 2022, 13, 74.	5.8	23
2	Levalbuterol lowers the feedback inhibition by dopamine and delays misfolding and aggregation in tyrosine hydroxylase. Biochimie, 2021, 183, 126-132.	1.3	9
3	Investigating the Disordered and Membrane-Active Peptide A-Cage-C Using Conformational Ensembles. Molecules, 2021, 26, 3607.	1.7	0
4	Synthetic corticosteroids as tryptophan hydroxylase stabilizers. Future Medicinal Chemistry, 2021, 13, 1465-1474.	1.1	2
5	Inhibition of Tryptophan Hydroxylases and Monoamine Oxidase-A by the Proton Pump Inhibitor, Omeprazole—In Vitro and In Vivo Investigations. Frontiers in Pharmacology, 2020, 11, 593416.	1.6	10
6	Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Medicinal Chemistry, 2020, 12, 1461-1474.	1.1	10
7	The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS Journal, 2020, 287, 4458-4480.	2.2	4
8	Golgi-Localized PAQR4 Mediates Antiapoptotic Ceramidase Activity in Breast Cancer. Cancer Research, 2020, 80, 2163-2174.	0.4	8
9	Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1510-1521.	1.4	25
10	Dominant <i>ARL3</i> -related retinitis pigmentosa. Ophthalmic Genetics, 2019, 40, 124-128.	0.5	16
11	Cripto stabilizes GRP78 on the cell membrane. Protein Science, 2018, 27, 653-661.	3.1	13
12	Substituting Tyr ¹³⁸ in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation. FEBS Open Bio, 2017, 7, 1026-1036.	1.0	4
13	Pharmacological Chaperones that Protect Tetrahydrobiopterin Dependent Aromatic Amino Acid Hydroxylases Through Different Mechanisms. Current Drug Targets, 2016, 17, 1515-1526.	1.0	21
14	Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Physical Chemistry Chemical Physics, 2016, 18, 10573-10584.	1.3	44
15	Structural and dynamics studies of human phenylalanine hydroxylase, a highly regulated allosteric enzyme. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s239-s239.	0.0	0
16	Mammalian CSAD and GADL1 have distinct biochemical properties and patterns of brain expression. Neurochemistry International, 2015, 90, 173-184.	1.9	26
17	All-atom lipid bilayer self-assembly with the AMBER and CHARMM lipid force fields. Chemical Communications, 2015, 51, 4402-4405.	2.2	49
18	Discovery of compounds that protect tyrosine hydroxylase activity through different mechanisms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1078-1089.	1,1	17

Knut Teigen

#	Article	IF	CITATIONS
19	Introduction of Aromatic Ring-Containing Substituents in Cyclic Nucleotides Is Associated with Inhibition of Toxin Uptake by the Hepatocyte Transporters OATP 1B1 and 1B3. PLoS ONE, 2014, 9, e94926.	1.1	8
20	The N-Terminal Sequence of Tyrosine Hydroxylase Is a Conformationally Versatile Motif That Binds 14-3-3 Proteins and Membranes. Journal of Molecular Biology, 2014, 426, 150-168.	2.0	29
21	Lipid14: The Amber Lipid Force Field. Journal of Chemical Theory and Computation, 2014, 10, 865-879.	2.3	1,068
22	Screening and Evaluation of Small Organic Molecules as ClpB Inhibitors and Potential Antimicrobials. Journal of Medicinal Chemistry, 2013, 56, 7177-7189.	2.9	18
23	Inhibition of sorbitol dehydrogenase by nucleosides and nucleotides. Biochemical and Biophysical Research Communications, 2013, 435, 202-208.	1.0	7
24	lodinin (1,6-Dihydroxyphenazine 5,10-Dioxide) from Streptosporangium sp. Induces Apoptosis Selectively in Myeloid Leukemia Cell Lines and Patient Cells. Marine Drugs, 2013, 11, 332-349.	2.2	26
25	LIPID11: A Modular Framework for Lipid Simulations Using Amber. Journal of Physical Chemistry B, 2012, 116, 11124-11136.	1.2	187
26	Binding of ATP at the active site of human pancreatic glucokinase – nucleotideâ€induced conformational changes with possible implications for its kinetic cooperativity. FEBS Journal, 2011, 278, 2372-2386.	 2.2	19
27	Intramolecular hydrogen bonding in articaine can be related to superior bone tissue penetration: A molecular dynamics study. Biophysical Chemistry, 2011, 154, 18-25.	1.5	39
28	Substrate Hydroxylation by the Oxido–Iron Intermediate in Aromatic Amino Acid Hydroxylases: A DFT Mechanistic Study. European Journal of Inorganic Chemistry, 2011, 2011, 2720-2732.	1.0	5
29	Formation of the Iron–Oxo Hydroxylating Species in the Catalytic Cycle of Aromatic Amino Acid Hydroxylases. Chemistry - A European Journal, 2011, 17, 3746-3758.	1.7	12
30	Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations. PLoS Computational Biology, 2011, 7, e1002004.	1.5	27
31	The Regulatory Subunit of PKA-I Remains Partially Structured and Undergoes Î ² -Aggregation upon Thermal Denaturation. PLoS ONE, 2011, 6, e17602.	1.1	11
32	Superstoichiometric binding of L-Phe to phenylalanine hydroxylase from Caenorhabditis elegans: evolutionary implications. Amino Acids, 2010, 39, 1463-1475.	1.2	14
33	Water Dissociation and Dioxygen Binding in Phenylalanine Hydroxylase. European Journal of Inorganic Chemistry, 2010, 2010, 351-356.	1.0	5
34	The Aromatic Amino Acid Hydroxylase Mechanism: A Perspective From Computational Chemistry. Advances in Inorganic Chemistry, 2010, , 437-500.	0.4	11
35	Overview of computational methods employed in early-stage drug discovery. Future Medicinal Chemistry, 2009, 1, 49-63.	1.1	10
36	Rescuing Proteins of Low Kinetic Stability by Chaperones and Natural Ligands: Phenylketonuria, a Case Study. Progress in Molecular Biology and Translational Science, 2008, 83, 89-134.	0.9	31

Knut Teigen

#	Article	IF	CITATIONS
37	Selectivity and Affinity Determinants for Ligand Binding to the Aromatic Amino Acid Hydroxylases. Current Medicinal Chemistry, 2007, 14, 455-467.	1.2	46
38	A simple method to calculate the accessible volume of protein-bound ligands: Application for ligand selectivity. Journal of Molecular Graphics and Modelling, 2007, 26, 429-433.	1.3	1
39	Epac1 and cAMP-dependent Protein Kinase Holoenzyme Have Similar cAMP Affinity, but Their cAMP Domains Have Distinct Structural Features and Cyclic Nucleotide Recognition. Journal of Biological Chemistry, 2006, 281, 21500-21511.	1.6	133
40	Specific interaction of the diastereomers 7(R)―and 7(S)â€ŧetrahydrobiopterin with phenylalanine hydroxylase: implications for understanding primapterinuria and vitiligo. FASEB Journal, 2006, 20, 2130-2132.	0.2	37
41	The Reaction Mechanism of Phenylalanine Hydroxylase. – A Question of Coordination. Pteridines, 2005, 16, 27-34.	0.5	6
42	Thermodynamic Characterization of the Binding of Tetrahydropterins to Phenylalanine Hydroxylase§. Journal of the American Chemical Society, 2004, 126, 13670-13678.	6.6	36
43	Tetrahydrobiopterin Binding to Aromatic Amino Acid Hydroxylases. Ligand Recognition and Specificity. Journal of Medicinal Chemistry, 2004, 47, 5962-5971.	2.9	18
44	Structural and stability effects of phosphorylation: Localized structural changes in phenylalanine hydroxylase. Protein Science, 2004, 13, 1219-1226.	3.1	26
45	Activation of Phenylalanine Hydroxylase:  Effect of Substitutions at Arg68 and Cys237. Biochemistry, 2003, 42, 3419-3428.	1.2	46
46	Probing Cofactor Specificity in Phenylalanine Hydroxylase by Molecular Dynamics Simulations. Journal of Biomolecular Structure and Dynamics, 2003, 20, 733-740.	2.0	20
47	Phosphorylation and Mutations of Ser16 in Human Phenylalanine Hydroxylase. Journal of Biological Chemistry, 2002, 277, 40937-40943.	1.6	42
48	The Conformation of Tetrahydro-Biopterin Free and Bound to Aromatic Amino Acid Hydroxylases and NOS. , 2002, , 67-72.		0
49	Conformation of the Substrate and Pterin Cofactor Bound to Human Tryptophan Hydroxylase. Important Role of Phe313 in Substrate Specificity. Biochemistry, 2001, 40, 15591-15601.	1.2	60
50	The conformation of 5, 6, 7, 8-tetrahydrobiopterin and 7,8-dihydrobiopterin in solution: a 1H NMR study. Pteridines, 2000, 11, 32-33.	0.5	7
51	A Kinetic and Conformational Study on the Interaction of Tetrahydropteridines with Tyrosine Hydroxylaseâ€. Biochemistry, 2000, 39, 13676-13686.	1.2	25
52	The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism 1 1Edited by D. C. Rees. Journal of Molecular Biology, 1999, 294, 807-823.	2.0	61