Knut Teigen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761087/publications.pdf Version: 2024-02-01

KNUT TEICEN

#	Article	IF	CITATIONS
1	Lipid14: The Amber Lipid Force Field. Journal of Chemical Theory and Computation, 2014, 10, 865-879.	5.3	1,068
2	LIPID11: A Modular Framework for Lipid Simulations Using Amber. Journal of Physical Chemistry B, 2012, 116, 11124-11136.	2.6	187
3	Epac1 and cAMP-dependent Protein Kinase Holoenzyme Have Similar cAMP Affinity, but Their cAMP Domains Have Distinct Structural Features and Cyclic Nucleotide Recognition. Journal of Biological Chemistry, 2006, 281, 21500-21511.	3.4	133
4	The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism 1 1Edited by D. C. Rees. Journal of Molecular Biology, 1999, 294, 807-823.	4.2	61
5	Conformation of the Substrate and Pterin Cofactor Bound to Human Tryptophan Hydroxylase. Important Role of Phe313 in Substrate Specificity. Biochemistry, 2001, 40, 15591-15601.	2.5	60
6	All-atom lipid bilayer self-assembly with the AMBER and CHARMM lipid force fields. Chemical Communications, 2015, 51, 4402-4405.	4.1	49
7	Activation of Phenylalanine Hydroxylase:  Effect of Substitutions at Arg68 and Cys237. Biochemistry, 2003, 42, 3419-3428.	2.5	46
8	Selectivity and Affinity Determinants for Ligand Binding to the Aromatic Amino Acid Hydroxylases. Current Medicinal Chemistry, 2007, 14, 455-467.	2.4	46
9	Simulation of lipid bilayer self-assembly using all-atom lipid force fields. Physical Chemistry Chemical Physics, 2016, 18, 10573-10584.	2.8	44
10	Phosphorylation and Mutations of Ser16 in Human Phenylalanine Hydroxylase. Journal of Biological Chemistry, 2002, 277, 40937-40943.	3.4	42
11	Intramolecular hydrogen bonding in articaine can be related to superior bone tissue penetration: A molecular dynamics study. Biophysical Chemistry, 2011, 154, 18-25.	2.8	39
12	Specific interaction of the diastereomers 7(R)―and 7(S)â€ŧetrahydrobiopterin with phenylalanine hydroxylase: implications for understanding primapterinuria and vitiligo. FASEB Journal, 2006, 20, 2130-2132.	0.5	37
13	Thermodynamic Characterization of the Binding of Tetrahydropterins to Phenylalanine Hydroxylase§. Journal of the American Chemical Society, 2004, 126, 13670-13678.	13.7	36
14	Rescuing Proteins of Low Kinetic Stability by Chaperones and Natural Ligands: Phenylketonuria, a Case Study. Progress in Molecular Biology and Translational Science, 2008, 83, 89-134.	1.7	31
15	The N-Terminal Sequence of Tyrosine Hydroxylase Is a Conformationally Versatile Motif That Binds 14-3-3 Proteins and Membranes. Journal of Molecular Biology, 2014, 426, 150-168.	4.2	29
16	Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations. PLoS Computational Biology, 2011, 7, e1002004.	3.2	27
17	Structural and stability effects of phosphorylation: Localized structural changes in phenylalanine hydroxylase. Protein Science, 2004, 13, 1219-1226.	7.6	26
18	Iodinin (1,6-Dihydroxyphenazine 5,10-Dioxide) from Streptosporangium sp. Induces Apoptosis Selectively in Myeloid Leukemia Cell Lines and Patient Cells. Marine Drugs, 2013, 11, 332-349.	4.6	26

Knut Teigen

#	Article	IF	CITATIONS
19	Mammalian CSAD and GADL1 have distinct biochemical properties and patterns of brain expression. Neurochemistry International, 2015, 90, 173-184.	3.8	26
20	A Kinetic and Conformational Study on the Interaction of Tetrahydropteridines with Tyrosine Hydroxylaseâ€. Biochemistry, 2000, 39, 13676-13686.	2.5	25
21	Characterization of the interaction of the antifungal and cytotoxic cyclic glycolipopeptide hassallidin with sterol-containing lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1510-1521.	2.6	25
22	Structural mechanism for tyrosine hydroxylase inhibition by dopamine and reactivation by Ser40 phosphorylation. Nature Communications, 2022, 13, 74.	12.8	23
23	Pharmacological Chaperones that Protect Tetrahydrobiopterin Dependent Aromatic Amino Acid Hydroxylases Through Different Mechanisms. Current Drug Targets, 2016, 17, 1515-1526.	2.1	21
24	Probing Cofactor Specificity in Phenylalanine Hydroxylase by Molecular Dynamics Simulations. Journal of Biomolecular Structure and Dynamics, 2003, 20, 733-740.	3.5	20
25	Binding of ATP at the active site of human pancreatic glucokinaseâ€f–â€fnucleotideâ€induced conformational changes with possible implications for its kinetic cooperativity. FEBS Journal, 2011, 278, 2372-2386.	4.7	19
26	Tetrahydrobiopterin Binding to Aromatic Amino Acid Hydroxylases. Ligand Recognition and Specificity. Journal of Medicinal Chemistry, 2004, 47, 5962-5971.	6.4	18
27	Screening and Evaluation of Small Organic Molecules as ClpB Inhibitors and Potential Antimicrobials. Journal of Medicinal Chemistry, 2013, 56, 7177-7189.	6.4	18
28	Discovery of compounds that protect tyrosine hydroxylase activity through different mechanisms. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1078-1089.	2.3	17
29	Dominant <i>ARL3</i> -related retinitis pigmentosa. Ophthalmic Genetics, 2019, 40, 124-128.	1.2	16
30	Superstoichiometric binding of L-Phe to phenylalanine hydroxylase from Caenorhabditis elegans: evolutionary implications. Amino Acids, 2010, 39, 1463-1475.	2.7	14
31	Cripto stabilizes GRP78 on the cell membrane. Protein Science, 2018, 27, 653-661.	7.6	13
32	Formation of the Iron–Oxo Hydroxylating Species in the Catalytic Cycle of Aromatic Amino Acid Hydroxylases. Chemistry - A European Journal, 2011, 17, 3746-3758.	3.3	12
33	The Aromatic Amino Acid Hydroxylase Mechanism: A Perspective From Computational Chemistry. Advances in Inorganic Chemistry, 2010, , 437-500.	1.0	11
34	The Regulatory Subunit of PKA-I Remains Partially Structured and Undergoes Î ² -Aggregation upon Thermal Denaturation. PLoS ONE, 2011, 6, e17602.	2.5	11
35	Overview of computational methods employed in early-stage drug discovery. Future Medicinal Chemistry, 2009, 1, 49-63.	2.3	10
36	Inhibition of Tryptophan Hydroxylases and Monoamine Oxidase-A by the Proton Pump Inhibitor, Omeprazole—In Vitro and In Vivo Investigations. Frontiers in Pharmacology, 2020, 11, 593416.	3.5	10

Knut Teigen

#	Article	IF	CITATIONS
37	Discovery and biological characterization of a novel scaffold for potent inhibitors of peripheral serotonin synthesis. Future Medicinal Chemistry, 2020, 12, 1461-1474.	2.3	10
38	Levalbuterol lowers the feedback inhibition by dopamine and delays misfolding and aggregation in tyrosine hydroxylase. Biochimie, 2021, 183, 126-132.	2.6	9
39	Introduction of Aromatic Ring-Containing Substituents in Cyclic Nucleotides Is Associated with Inhibition of Toxin Uptake by the Hepatocyte Transporters OATP 1B1 and 1B3. PLoS ONE, 2014, 9, e94926.	2.5	8
40	Golgi-Localized PAQR4 Mediates Antiapoptotic Ceramidase Activity in Breast Cancer. Cancer Research, 2020, 80, 2163-2174.	0.9	8
41	The conformation of 5, 6, 7, 8-tetrahydrobiopterin and 7,8-dihydrobiopterin in solution: a 1H NMR study. Pteridines, 2000, 11, 32-33.	0.5	7
42	Inhibition of sorbitol dehydrogenase by nucleosides and nucleotides. Biochemical and Biophysical Research Communications, 2013, 435, 202-208.	2.1	7
43	The Reaction Mechanism of Phenylalanine Hydroxylase. – A Question of Coordination. Pteridines, 2005, 16, 27-34.	0.5	6
44	Water Dissociation and Dioxygen Binding in Phenylalanine Hydroxylase. European Journal of Inorganic Chemistry, 2010, 2010, 351-356.	2.0	5
45	Substrate Hydroxylation by the Oxido–Iron Intermediate in Aromatic Amino Acid Hydroxylases: A DFT Mechanistic Study. European Journal of Inorganic Chemistry, 2011, 2011, 2720-2732.	2.0	5
46	Substituting Tyr ¹³⁸ in the active site loop of human phenylalanine hydroxylase affects catalysis and substrate activation. FEBS Open Bio, 2017, 7, 1026-1036.	2.3	4
47	The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS Journal, 2020, 287, 4458-4480.	4.7	4
48	Synthetic corticosteroids as tryptophan hydroxylase stabilizers. Future Medicinal Chemistry, 2021, 13, 1465-1474.	2.3	2
49	A simple method to calculate the accessible volume of protein-bound ligands: Application for ligand selectivity. Journal of Molecular Graphics and Modelling, 2007, 26, 429-433.	2.4	1
50	Investigating the Disordered and Membrane-Active Peptide A-Cage-C Using Conformational Ensembles. Molecules, 2021, 26, 3607.	3.8	0
51	The Conformation of Tetrahydro-Biopterin Free and Bound to Aromatic Amino Acid Hydroxylases and NOS. , 2002, , 67-72.		0
52	Structural and dynamics studies of human phenylalanine hydroxylase, a highly regulated allosteric enzyme. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s239-s239.	0.1	0