List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5761019/publications.pdf Version: 2024-02-01



FENC CHEN

| #  | Article                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Isothermal Amplification of Nucleic Acids. Chemical Reviews, 2015, 115, 12491-12545.                                                                                                                                                                                                                                   | 47.7 | 1,292     |
| 2  | Superoleophobic surfaces. Chemical Society Reviews, 2017, 46, 4168-4217.                                                                                                                                                                                                                                               | 38.1 | 613       |
| 3  | Bioinspired Wetting Surface via Laser Microfabrication. ACS Applied Materials & Interfaces, 2013, 5, 6777-6792.                                                                                                                                                                                                        | 8.0  | 194       |
| 4  | A simple way to achieve superhydrophobicity, controllable water adhesion, anisotropic sliding, and<br>anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces. Journal of<br>Materials Chemistry A, 2014, 2, 5499-5507.                                                                         | 10.3 | 172       |
| 5  | Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond<br>Laser Ablation for Anti- or Capturing Bubbles. ACS Applied Materials & Interfaces, 2017, 9,<br>39863-39871.                                                                                                            | 8.0  | 162       |
| 6  | Bioinspired underwater superoleophobic surface with ultralow oil-adhesion achieved by femtosecond laser microfabrication. Journal of Materials Chemistry A, 2014, 2, 8790-8795.                                                                                                                                        | 10.3 | 160       |
| 7  | Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for<br>oil/water separation: Separating oil from water and corrosive solutions. Applied Surface Science,<br>2016, 389, 1148-1155.                                                                                               | 6.1  | 160       |
| 8  | Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater<br>superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater<br>superaerophilicity on femtosecond laser ablated PDMS surfaces. Journal of Materials Chemistry A,<br>2017, 5, 25249-25257. | 10.3 | 147       |
| 9  | Femtosecond Laser Weaving Superhydrophobic Patterned PDMS Surfaces with Tunable Adhesion.<br>Journal of Physical Chemistry C, 2013, 117, 24907-24912.                                                                                                                                                                  | 3.1  | 143       |
| 10 | A Simple Way To Achieve Pattern-Dependent Tunable Adhesion in Superhydrophobic Surfaces by a<br>Femtosecond Laser. ACS Applied Materials & Interfaces, 2012, 4, 4905-4912.                                                                                                                                             | 8.0  | 141       |
| 11 | Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Optics Express, 2010, 18, 20334.                                                                                                                                                          | 3.4  | 138       |
| 12 | Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter, 2011, 7, 6435.                                                                                                                                                                                                             | 2.7  | 137       |
| 13 | Two-dimensional MXene-reinforced robust surface superhydrophobicity with self-cleaning and photothermal-actuating binary effects. Materials Horizons, 2019, 6, 1057-1065.                                                                                                                                              | 12.2 | 135       |
| 14 | Femtosecond laser controlled wettability of solid surfaces. Soft Matter, 2015, 11, 8897-8906.                                                                                                                                                                                                                          | 2.7  | 125       |
| 15 | Rapid Fabrication of Large-Area Concave Microlens Arrays on PDMS by a Femtosecond Laser. ACS<br>Applied Materials & Interfaces, 2013, 5, 9382-9385.                                                                                                                                                                    | 8.0  | 122       |
| 16 | Photoinduced switchable underwater superoleophobicity–superoleophilicity on laser modified titanium surfaces. Journal of Materials Chemistry A, 2015, 3, 10703-10709.                                                                                                                                                  | 10.3 | 122       |
| 17 | Oilâ€Water Separation: A Gift from the Desert. Advanced Materials Interfaces, 2016, 3, 1500650.                                                                                                                                                                                                                        | 3.7  | 121       |
| 18 | <i>Nepenthes</i> Inspired Design of Selfâ€Repairing Omniphobic Slippery Liquid Infused Porous Surface<br>(SLIPS) by Femtosecond Laser Direct Writing. Advanced Materials Interfaces, 2017, 4, 1700552.                                                                                                                 | 3.7  | 120       |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Oil/water separation based on natural materials with super-wettability: recent advances. Physical<br>Chemistry Chemical Physics, 2018, 20, 25140-25163.                                                                           | 2.8  | 119       |
| 20 | Controllable Adhesive Superhydrophobic Surfaces Based on PDMS Microwell Arrays. Langmuir, 2013, 29, 3274-3279.                                                                                                                    | 3.5  | 117       |
| 21 | A simple route to fabricate artificial compound eye structures. Optics Express, 2012, 20, 5775.                                                                                                                                   | 3.4  | 113       |
| 22 | Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral<br>oligomeric silsesquioxane for ultrafast oil/water separation. Chemical Engineering Journal, 2020, 379,<br>122391.              | 12.7 | 107       |
| 23 | Fabricating MnO <sub>2</sub> Nanozymes as Intracellular Catalytic DNA Circuit Generators for<br>Versatile Imaging of Baseâ€Excision Repair in Living Cells. Advanced Functional Materials, 2017, 27,<br>1702748.                  | 14.9 | 106       |
| 24 | Dragonflyâ€Eyeâ€Inspired Artificial Compound Eyes with Sophisticated Imaging. Advanced Functional<br>Materials, 2016, 26, 1995-2001.                                                                                              | 14.9 | 102       |
| 25 | Anisotropic Wetting on Microstrips Surface Fabricated by Femtosecond Laser. Langmuir, 2011, 27, 359-365.                                                                                                                          | 3.5  | 101       |
| 26 | Bioinspired transparent underwater superoleophobic and anti-oil surfaces. Journal of Materials<br>Chemistry A, 2015, 3, 9379-9384.                                                                                                | 10.3 | 99        |
| 27 | A Review of Femtosecond‣aserâ€Induced Underwater Superoleophobic Surfaces. Advanced Materials<br>Interfaces, 2018, 5, 1701370.                                                                                                    | 3.7  | 95        |
| 28 | Superhydrophobicity-memory surfaces prepared by a femtosecond laser. Chemical Engineering Journal, 2020, 383, 123143.                                                                                                             | 12.7 | 92        |
| 29 | Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells. ACS Nano, 2017, 11, 11908-11914.                                                                                                                     | 14.6 | 89        |
| 30 | A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation. RSC Advances, 2019, 9, 12470-12495.                                         | 3.6  | 89        |
| 31 | Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signalamplification. Biosensors and Bioelectronics, 2013, 42, 56-61.                | 10.1 | 87        |
| 32 | Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining.<br>Optics Letters, 2015, 40, 1928.                                                                                              | 3.3  | 87        |
| 33 | Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with<br>through microholes for selective passage of air bubbles and further collection of underwater gas.<br>Nanoscale, 2018, 10, 3688-3696. | 5.6  | 87        |
| 34 | Femtosecond Laser Direct Writing of Porous Network Microstructures for Fabricating Super lippery<br>Surfaces with Excellent Liquid Repellence and Antiâ€Cell Proliferation. Advanced Materials Interfaces,<br>2018, 5, 1701479.   | 3.7  | 86        |
| 35 | Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser<br>enhanced wet etching process. Applied Physics Letters, 2016, 109, .                                                        | 3.3  | 85        |
| 36 | Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability.<br>Chemical Communications, 2015, 51, 9813-9816.                                                                                | 4.1  | 78        |

| #  | Article                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Influence of liquid environments on femtosecond laser ablation of silicon. Thin Solid Films, 2010, 518, 5188-5194.                                                                                                                                                                               | 1.8  | 76        |
| 38 | Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Applied Surface Science, 2014, 288, 579-583.                                                                                                                                                 | 6.1  | 76        |
| 39 | Anisotropic, adhesion-switchable, and thermal-responsive superhydrophobicity on the femtosecond<br>laser-structured shape-memory polymer for droplet manipulation. Chemical Engineering Journal, 2020,<br>400, 125930.                                                                           | 12.7 | 75        |
| 40 | Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and<br>Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling<br>or Capturing Bubbles in Water. ACS Applied Materials & Interfaces, 2019, 11, 8667-8675. | 8.0  | 64        |
| 41 | Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching.<br>Applied Surface Science, 2014, 289, 529-532.                                                                                                                                            | 6.1  | 61        |
| 42 | Green, Biodegradable, Underwater Superoleophobic Wood Sheet for Efficient Oil/Water Separation.<br>ACS Omega, 2018, 3, 1395-1402.                                                                                                                                                                | 3.5  | 61        |
| 43 | Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser. Applied Physics A: Materials Science and Processing, 2013, 111, 243-249.                                                                                                              | 2.3  | 60        |
| 44 | Reversible Underwater Lossless Oil Droplet Transportation. Advanced Materials Interfaces, 2015, 2, 1400388.                                                                                                                                                                                      | 3.7  | 60        |
| 45 | Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces. Optics<br>Express, 2012, 20, 12939.                                                                                                                                                                  | 3.4  | 57        |
| 46 | Compressed Ultrafast Spectral-Temporal Photography. Physical Review Letters, 2019, 122, 193904.                                                                                                                                                                                                  | 7.8  | 54        |
| 47 | Photoetching of spherical microlenses on glasses using a femtosecond laser. Optics Communications, 2009, 282, 4119-4123.                                                                                                                                                                         | 2.1  | 53        |
| 48 | Fabrication of superhydrophilic and underwater superoleophobic membranes for fast and effective oil/water separation with excellent durability. Journal of Membrane Science, 2021, 620, 118898.                                                                                                  | 8.2  | 50        |
| 49 | Nature-Inspired Superwettability Achieved by Femtosecond Lasers. Ultrafast Science, 2022, 2022, .                                                                                                                                                                                                | 11.2 | 50        |
| 50 | Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femotosecond laser. Soft Matter, 2011, 7, 8337.                                                                                                                                              | 2.7  | 49        |
| 51 | Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica. Optics Letters, 2012, 37, 3825.                                                                                                                                           | 3.3  | 49        |
| 52 | Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections. Applied Physics Letters, 2012, 100, .                                                                                                                                                  | 3.3  | 48        |
| 53 | Fabrication of concave spherical microlenses on silicon by femtosecond laser irradiation and mixed acid etching. Optics Express, 2014, 22, 15245.                                                                                                                                                | 3.4  | 48        |
| 54 | Bioinspired Fabrication of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic PDMS Surfaces by<br>Femtosecond Laser. Advanced Materials Interfaces, 2018, 5, 1701245.                                                                                                                      | 3.7  | 48        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | How To Obtain Six Different Superwettabilities on a Same Microstructured Pattern: Relationship<br>between Various Superwettabilities in Different Solid/Liquid/Gas Systems. Langmuir, 2019, 35, 921-927.                                        | 3.5  | 48        |
| 56 | Designing "Supermetalphobic―Surfaces that Greatly Repel Liquid Metal by Femtosecond Laser<br>Processing: Does the Surface Chemistry or Microstructure Play a Crucial Role?. Advanced Materials<br>Interfaces, 2020, 7, 1901931.                 | 3.7  | 48        |
| 57 | Methylation-blocked enzymatic recycling amplification for highly sensitive fluorescence sensing of DNA methyltransferase activity. Analyst, The, 2013, 138, 284-289.                                                                            | 3.5  | 47        |
| 58 | Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass. Optics<br>Letters, 2014, 39, 606.                                                                                                                   | 3.3  | 45        |
| 59 | Bioinspired superhydrophobic surfaces with directional Adhesion. RSC Advances, 2014, 4, 8138.                                                                                                                                                   | 3.6  | 44        |
| 60 | Wetting characteristics on hierarchical structures patterned by a femtosecond laser. Journal of Micromechanics and Microengineering, 2010, 20, 075029.                                                                                          | 2.6  | 42        |
| 61 | One-step highly sensitive florescence detection of T4 polynucleotide kinase activity and biological<br>small molecules by ligation-nicking coupled reaction-mediated signal amplification. Biosensors and<br>Bioelectronics, 2013, 47, 218-224. | 10.1 | 41        |
| 62 | Femtosecond laser preparing patternable liquid-metal-repellent surface for flexible electronics.<br>Journal of Colloid and Interface Science, 2020, 578, 146-154.                                                                               | 9.4  | 38        |
| 63 | Ultrasensitive and selective detection of nicotinamide adenine dinucleotide by target-triggered ligation–rolling circle amplification. Chemical Communications, 2012, 48, 3354.                                                                 | 4.1  | 36        |
| 64 | Polymerase/nicking enzyme synergetic isothermal quadratic DNA machine and its application for<br>one-step amplified biosensing of lead (II) ions at femtomole level and DNA methyltransferase. NPG Asia<br>Materials, 2014, 6, e131-e131.       | 7.9  | 36        |
| 65 | Underwater gas self-transportation along femtosecond laser-written open superhydrophobic<br>surface microchannels (<100 µm) for bubble/gas manipulation. International Journal of Extreme<br>Manufacturing, 2022, 4, 015002.                    | 12.7 | 34        |
| 66 | Ultrafast nonlinear optical properties of Bi2O3–B2O3–SiO2 oxide glass. Optics Communications, 2007, 275, 230-233.                                                                                                                               | 2.1  | 33        |
| 67 | Alcohol-assisted photoetching of silicon carbide with a femtosecond laser. Optics Communications, 2009, 282, 78-80.                                                                                                                             | 2.1  | 33        |
| 68 | Direct fabrication of seamless roller molds with gapless and shaped-controlled concave microlens arrays. Optics Letters, 2012, 37, 4404.                                                                                                        | 3.3  | 32        |
| 69 | An alternative approach for femtosecond laser induced black silicon in ambient air. Applied Surface Science, 2012, 261, 722-726.                                                                                                                | 6.1  | 32        |
| 70 | Design and analysis of the cross-linked dual helical micromixer for rapid mixing at low Reynolds numbers. Microfluidics and Nanofluidics, 2015, 19, 169-180.                                                                                    | 2.2  | 31        |
| 71 | Underwater Superaerophobic and Superaerophilic Nanoneedlesâ€Structured Meshes for Water/Bubbles<br>Separation: Removing or Collecting Gas Bubbles in Water. Clobal Challenges, 2018, 2, 1700133.                                                | 3.6  | 31        |
| 72 | 3D Multi-Microchannel Helical Mixer Fabricated by Femtosecond Laser inside Fused Silica.<br>Micromachines, 2018, 9, 29.                                                                                                                         | 2.9  | 30        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | IR Artificial Compound Eye. Advanced Optical Materials, 2020, 8, 1901767.                                                                                                                                                               | 7.3  | 30        |
| 74 | Inhibitory Impact of 3′-Terminal 2′-O-Methylated Small Silencing RNA on Target-Primed Polymerization<br>and Unbiased Amplified Quantification of the RNA in <i>Arabidopsis thaliana</i> . Analytical Chemistry,<br>2015, 87, 8758-8764. | 6.5  | 28        |
| 75 | Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS<br>Microlens Array by Femtosecond Laser Microfabrication. Advanced Engineering Materials, 2019, 21,<br>1800994.                                | 3.5  | 28        |
| 76 | Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching. Optics<br>Express, 2014, 22, 29283.                                                                                                           | 3.4  | 27        |
| 77 | Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems.<br>Applied Surface Science, 2018, 457, 1202-1207.                                                                                    | 6.1  | 27        |
| 78 | Ultrafast temperature relaxation evolution in Au film under femtosecond laser pulses irradiation.<br>Optics Communications, 2010, 283, 1869-1872.                                                                                       | 2.1  | 26        |
| 79 | A bioinspired planar superhydrophobic microboat. Journal of Micromechanics and Microengineering, 2014, 24, 035006.                                                                                                                      | 2.6  | 26        |
| 80 | Guiding magnetic liquid metal for flexible circuit. International Journal of Extreme Manufacturing, 2021, 3, 025102.                                                                                                                    | 12.7 | 26        |
| 81 | Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching.<br>Applied Physics A: Materials Science and Processing, 2015, 121, 157-162.                                                        | 2.3  | 25        |
| 82 | Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications. Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                                                | 2.3  | 25        |
| 83 | Remote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared light. Science China Chemistry, 2021, 64, 861-872.                              | 8.2  | 24        |
| 84 | Insight into the thermionic emission regimes under gold film thermal relaxation excited by a femtosecond pulse. Applied Surface Science, 2011, 257, 9177-9182.                                                                          | 6.1  | 23        |
| 85 | Underwater Transparent Miniature "Mechanical Hand―Based on Femtosecond Laser-Induced<br>Controllable Oil-Adhesive Patterned Glass for Oil Droplet Manipulation. Langmuir, 2017, 33, 3659-3665.                                          | 3.5  | 23        |
| 86 | Femtosecond-Laser-Produced Underwater "Superpolymphobic―Nanorippled Surfaces: Repelling Liquid<br>Polymers in Water for Applications of Controlling Polymer Shape and Adhesion. ACS Applied Nano<br>Materials, 2019, 2, 7362-7371.      | 5.0  | 22        |
| 87 | Femtosecond Laser-Induced Underwater Superoleophobic Surfaces with Reversible pH-Responsive<br>Wettability. Langmuir, 2019, 35, 3295-3301.                                                                                              | 3.5  | 22        |
| 88 | Magnetically Controllable Isotropic/Anisotropic Slippery Surface for Flexible Droplet Manipulation.<br>Langmuir, 2020, 36, 15403-15409.                                                                                                 | 3.5  | 22        |
| 89 | Underwater Superaerophobicity/Superaerophilicity and Unidirectional Bubble Passage Based on the<br>Femtosecond Laserâ€6tructured Stainless Steel Mesh. Advanced Materials Interfaces, 2020, 7, 1902128.                                 | 3.7  | 22        |
| 90 | Controllable underwater anisotropic oil-wetting. Applied Physics Letters, 2014, 105, .                                                                                                                                                  | 3.3  | 21        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | High-Performance Laser Beam Homogenizer Based on Double-Sided Concave Microlens. IEEE Photonics<br>Technology Letters, 2014, 26, 2086-2089.                                                                                  | 2.5 | 21        |
| 92  | Femtosecond laser controlling underwater oil-adhesion of glass surface. Applied Physics A: Materials<br>Science and Processing, 2015, 119, 837-844.                                                                          | 2.3 | 21        |
| 93  | Microfluidic Channels Fabrication Based on Underwater Superpolymphobic Microgrooves Produced by Femtosecond Laser Direct Writing. ACS Applied Polymer Materials, 2019, 1, 2819-2825.                                         | 4.4 | 21        |
| 94  | Femtosecond Laser-Structured Underwater "Superpolymphobic―Surfaces. Langmuir, 2019, 35,<br>9318-9322.                                                                                                                        | 3.5 | 21        |
| 95  | Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses. Optics<br>Communications, 2009, 282, 657-660.                                                                                         | 2.1 | 20        |
| 96  | Lens-on-lens microstructures. Optics Letters, 2015, 40, 5359.                                                                                                                                                                | 3.3 | 20        |
| 97  | A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys. Biomaterials Science, 2020, 8, 6505-6514.                             | 5.4 | 20        |
| 98  | Facile fabrication of true three-dimensional microcoils inside fused silica by a femtosecond laser.<br>Journal of Micromechanics and Microengineering, 2012, 22, 105017.                                                     | 2.6 | 19        |
| 99  | Fabrication of high-aspect-ratio grooves in silicon using femtosecond laser irradiation and oxygen-dependent acid etching. Optics Express, 2013, 21, 16657.                                                                  | 3.4 | 19        |
| 100 | A high-efficiency three-dimensional helical micromixer in fused silica. Microsystem Technologies, 2013, 19, 1033-1040.                                                                                                       | 2.0 | 18        |
| 101 | Process for the fabrication of complex three-dimensional microcoils in fused silica. Optics Letters, 2013, 38, 2911.                                                                                                         | 3.3 | 18        |
| 102 | Using an "underwater superoleophobic pattern―to make a liquid lens array. RSC Advances, 2015, 5,<br>40907-40911.                                                                                                             | 3.6 | 18        |
| 103 | Direct Fabrication of Microlens Arrays on PMMA With Laser-Induced Structural Modification. IEEE<br>Photonics Technology Letters, 2015, 27, 2253-2256.                                                                        | 2.5 | 18        |
| 104 | Morphological Feature Extraction Based on Multiview Images for Wear Debris Analysis in On-line<br>Fluid Monitoring. Tribology Transactions, 2017, 60, 408-418.                                                               | 2.0 | 18        |
| 105 | A femtosecond laser-induced superhygrophobic surface: beyond superhydrophobicity and repelling various complex liquids. RSC Advances, 2019, 9, 6650-6657.                                                                    | 3.6 | 18        |
| 106 | Reducing Adhesion for Dispensing Tiny Water/Oil Droplets and Gas Bubbles by Femtosecond<br>Laserâ€7reated Needle Nozzles: Superhydrophobicity, Superoleophobicity, and Superaerophobicity.<br>ChemNanoMat, 2019, 5, 241-249. | 2.8 | 18        |
| 107 | Liquidâ€Infused Slippery Stainless Steel Surface Prepared by Alcoholâ€Assisted Femtosecond Laser<br>Ablation. Advanced Materials Interfaces, 2021, 8, 2001334.                                                               | 3.7 | 18        |
| 108 | Low-cost high integration IR polymer microlens array. Optics Letters, 2019, 44, 1600.                                                                                                                                        | 3.3 | 18        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Femtosecond laser direct weaving bioinspired superhydrophobic/hydrophilic micro-pattern for fog harvesting. Optics and Laser Technology, 2022, 146, 107593.                                                                       | 4.6  | 18        |
| 110 | Simple and Low-Cost Oil/Water Separation Based on the Underwater Superoleophobicity of the Existing Materials in Our Life or Nature. Frontiers in Chemistry, 2020, 8, 507.                                                        | 3.6  | 17        |
| 111 | Trapped Airâ€Induced Reversible Transition between Underwater Superaerophilicity and<br>Superaerophobicity on the Femtosecond Laserâ€Ablated Superhydrophobic PTFE Surfaces. Advanced<br>Materials Interfaces, 2019, 6, 1900262.  | 3.7  | 16        |
| 112 | Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser. Nanoscale, 2021, 13, 10414-10424.                                    | 5.6  | 16        |
| 113 | Shape measurement of objects using an ultrafast optical Kerr gate of bismuth glass. Journal of Applied<br>Physics, 2010, 107, 043104.                                                                                             | 2.5  | 15        |
| 114 | A facile method to fabricate close-packed concave microlens array on cylindrical glass. Journal of Micromechanics and Microengineering, 2012, 22, 115026.                                                                         | 2.6  | 15        |
| 115 | Cost-efficient and flexible fabrication of rectangular-shaped microlens arrays with controllable aspect ratio and spherical morphology. Applied Surface Science, 2014, 292, 285-290.                                              | 6.1  | 15        |
| 116 | Reversible switch between underwater superaerophilicity and superaerophobicity on the<br>superhydrophobic nanowire-haired mesh for controlling underwater bubble wettability. AIP<br>Advances, 2018, 8, .                         | 1.3  | 15        |
| 117 | Underwater Anisotropic 3D Superoleophobic Tracks Applied for the Directional Movement of Oil<br>Droplets and the Microdroplets Reaction. Advanced Materials Interfaces, 2019, 6, 1900067.                                         | 3.7  | 15        |
| 118 | Liquid Metal-Based Reconfigurable and Repairable Electronics Designed by a Femtosecond Laser. ACS<br>Applied Electronic Materials, 2020, 2, 2685-2691.                                                                            | 4.3  | 15        |
| 119 | Filtration and removal of liquid polymers from water (polymer/water separation) by use of the underwater superpolymphobic mesh produced with a femtosecond laser. Journal of Colloid and Interface Science, 2021, 582, 1203-1212. | 9.4  | 15        |
| 120 | How to adjust bubble's adhesion on solid in aqueous media: Femtosecond laser-ablated patterned<br>shape-memory polymer surfaces to achieve bubble multi-manipulation. Chemical Engineering Journal,<br>2021, 414, 128694.         | 12.7 | 15        |
| 121 | Low threshold power density for the generation of frequency up-converted pulses in bismuth glass by two crossing chirped femtosecond pulses. Optics Express, 2011, 19, 12039.                                                     | 3.4  | 14        |
| 122 | Time-resolved single-shot imaging of femtosecond laser induced filaments using supercontinuum and optical polarigraphy. Applied Physics Letters, 2012, 100, .                                                                     | 3.3  | 14        |
| 123 | Photoinduced microchannels and element change inside silicon by femtosecond laser pulses. Optics Communications, 2012, 285, 140-142.                                                                                              | 2.1  | 14        |
| 124 | A Simple Way to Fabricate Close-Packed High Numerical Aperture Microlens Arrays. IEEE Photonics<br>Technology Letters, 2013, 25, 1336-1339.                                                                                       | 2.5  | 14        |
| 125 | Three-dimensional metallic microcomponents achieved in fused silica by a femtosecond-laser-based microsolidifying process. Microelectronic Engineering, 2014, 113, 93-97.                                                         | 2.4  | 14        |
| 126 | Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid<br>detection of mercury(II) ion with tunable dynamic range. Biosensors and Bioelectronics, 2016, 86,<br>892-898.                   | 10.1 | 14        |

| #   | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.<br>Scientific Reports, 2016, 6, 32675.                                                                             | 3.3 | 14        |
| 128 | Zeroâ€Background Helicaseâ€Đependent Amplification and Its Application to Reliable Assay of Telomerase<br>Activity in Cancer Cell by Eliminating Primer–Dimer Artifacts. ChemBioChem, 2016, 17, 1171-1176.       | 2.6 | 14        |
| 129 | Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining<br>Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes. Materials, 2020, 13,<br>3490.       | 2.9 | 14        |
| 130 | Substantial Improvement of Oil Aerosol Filtration Performance Using In-Plane Asymmetric Wettability.<br>ACS Applied Materials & Interfaces, 2020, 12, 28852-28860.                                               | 8.0 | 14        |
| 131 | Bioinspired Artificial Compound Eyes: Characteristic, Fabrication, and Application. Advanced Materials<br>Technologies, 2021, 6, 2100091.                                                                        | 5.8 | 14        |
| 132 | Underwater superoleophobic and anti-oil microlens array prepared by combing femtosecond laser wet etching and direct writing techniques. Optics Express, 2019, 27, 35903.                                        | 3.4 | 14        |
| 133 | Sunlight Recovering the Superhydrophobicity of a Femtosecond Laser-Structured Shape-Memory<br>Polymer. Langmuir, 2022, 38, 4645-4656.                                                                            | 3.5 | 14        |
| 134 | Fabrication of micro-gratings on Au–Cr thin film by femtosecond laser interference with different pulse durations. Applied Surface Science, 2009, 255, 8483-8487.                                                | 6.1 | 13        |
| 135 | Ultrafast thermalization characteristics in Au film irradiated by temporally shaped femtosecond laser pulses. Optics Communications, 2011, 284, 640-645.                                                         | 2.1 | 13        |
| 136 | High-aspect-ratio grooves fabricated in silicon by a single pass of femtosecond laser pulses. Journal of Applied Physics, 2012, 111, 093102.                                                                     | 2.5 | 13        |
| 137 | High-level integration of three-dimensional microcoils array in fused silica. Optics Letters, 2015, 40, 4050.                                                                                                    | 3.3 | 13        |
| 138 | Investigation on plasmonic responses in multilayered nanospheres including asymmetry and spatial nonlocal effects. Journal Physics D: Applied Physics, 2017, 50, 495302.                                         | 2.8 | 13        |
| 139 | A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser. Applied Physics A: Materials Science and Processing, 2017, 123, 1. | 2.3 | 13        |
| 140 | Bioinspired Antiâ€Fogging and Antiâ€Fouling Artificial Compound Eyes. Advanced Optical Materials, 2022,<br>10, .                                                                                                 | 7.3 | 13        |
| 141 | Elimination of the Coherent Artifact in a Pump-Probe Experiment by Directly Detecting the Background-Free Diffraction Signal. Chinese Physics Letters, 2011, 28, 086602.                                         | 3.3 | 12        |
| 142 | Wear particle classification using genetic programming evolved features. Lubrication Science, 2018, 30, 229-246.                                                                                                 | 2.1 | 12        |
| 143 | Emerging Separation Applications of Surface Superwettability. Nanomaterials, 2022, 12, 688.                                                                                                                      | 4.1 | 12        |
| 144 | Fabrication of three-dimensional microchannels inside silicon using a femtosecond laser. Journal of<br>Micromechanics and Microengineering, 2009, 19, 125007.                                                    | 2.6 | 11        |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Scalable shape-controlled fabrication of curved microstructures using a femtosecond laser wet-etching process. Materials Science and Engineering C, 2013, 33, 2795-2799.                     | 7.3 | 10        |
| 146 | Ultrafast thermalization dynamics in two-layer metal films excited by temporally shaped femtosecond<br>laser. International Journal of Heat and Mass Transfer, 2015, 87, 341-346.            | 4.8 | 10        |
| 147 | Optical response of cylindrical multilayers in the context of hydrodynamic convection-diffusion model. Journal of Applied Physics, 2016, 120, 123102.                                        | 2.5 | 10        |
| 148 | Mini-Review on Bioinspired Superwetting Microlens Array and Compound Eye. Frontiers in Chemistry, 2020, 8, 575786.                                                                           | 3.6 | 10        |
| 149 | Fabrication of ZnSe Microlens Array for a Wide Infrared Spectral Region. IEEE Photonics Technology<br>Letters, 2020, 32, 1327-1330.                                                          | 2.5 | 10        |
| 150 | Tuning a surface super-repellent to liquid metal by a femtosecond laser. RSC Advances, 2020, 10, 3301-3306.                                                                                  | 3.6 | 10        |
| 151 | Superwettabilityâ€based separation: From oil/water separation to polymer/water separation and<br>bubble/water separation. Nano Select, 2021, 2, 1580-1588.                                   | 3.7 | 10        |
| 152 | Oil-Water Separation Based on the Materials with Special Wettability. Wuli Huaxue Xuebao/ Acta<br>Physico - Chimica Sinica, 2018, 34, 456-475.                                               | 4.9 | 10        |
| 153 | Slippery Liquidâ€Infused Porous Surface on Metal Material with Excellent Ice Resistance Fabricated by<br>Femtosecond Bessel Laser. Advanced Engineering Materials, 2022, 24, .               | 3.5 | 10        |
| 154 | Femtosecond laser-induced mesoporous structures on silicon surface. Optics Communications, 2011, 284, 317-321.                                                                               | 2.1 | 9         |
| 155 | Efficient optical Kerr gate of tellurite glass for acquiring ultrafast fluorescence. Journal of Optics<br>(United Kingdom), 2012, 14, 065201.                                                | 2.2 | 9         |
| 156 | A simple method for fabrication of high-aspect-ratio all-silicon grooves. Applied Surface Science, 2013, 284, 372-378.                                                                       | 6.1 | 9         |
| 157 | Fabrication of Micro-Grooves in Silicon Carbide Using Femtosecond Laser Irradiation and Acid<br>Etching. Chinese Physics Letters, 2014, 31, 037901.                                          | 3.3 | 9         |
| 158 | A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation. Materials Science and Engineering C, 2013, 33, 663-667. | 7.3 | 8         |
| 159 | Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses. International Journal of Thermal Sciences, 2015, 90, 197-202.                      | 4.9 | 8         |
| 160 | A miniaturized Rogowski current transducer with wide bandwidth and fast response. Journal of<br>Micromechanics and Microengineering, 2016, 26, 115015.                                       | 2.6 | 8         |
| 161 | Femtosecond laser-patterned slippery surfaces on PET for liquid patterning and blood resistance.<br>Optics and Laser Technology, 2020, 132, 106469.                                          | 4.6 | 8         |
| 162 | Femtosecond laser hybrid fabrication of a 3D microfluidic chip for PCR application. Optics Express, 2020, 28, 25716.                                                                         | 3.4 | 8         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Microlens arrays enable variable-focus imaging. Optics and Laser Technology, 2022, 153, 108260.                                                                                                                 | 4.6 | 8         |
| 164 | Femtosecond laser directly writing microholes in Bi(Nb0.998V0.002)O4 ceramic and multi-photon induced large scale nanometer wires array. Journal of Materials Science: Materials in Electronics, 2011, 22, 1-5. | 2.2 | 7         |
| 165 | Ultrafast dynamics of thermionic emission on Au film under femtosecond laser excitation. Applied Physics A: Materials Science and Processing, 2013, 112, 479-483.                                               | 2.3 | 7         |
| 166 | Chirp structure measurement of a supercontinuum pulse based on transient lens effect in tellurite glass. Journal of Applied Physics, 2013, 113, 113106.                                                         | 2.5 | 7         |
| 167 | Endowing Metal Surfaces With Underwater Superoleophobicity by Femtosecond Laser Processing for<br>Oil-Water Separation Application. Frontiers in Physics, 2020, 8, .                                            | 2.1 | 7         |
| 168 | Artificial compound eye-tipped optical fiber for wide field illumination. Optics Letters, 2019, 44, 5961.                                                                                                       | 3.3 | 7         |
| 169 | Fabrication of a Chalcogenide Glass Microlens Array for Infrared Laser Beam Homogenization.<br>Materials, 2021, 14, 5952.                                                                                       | 2.9 | 7         |
| 170 | Polarization dependence of optical Kerr effect in metallophthalocyanine-doped inorganic–organic<br>hybrid materials. Optics Communications, 2009, 282, 1448-1451.                                               | 2.1 | 6         |
| 171 | Polarization Dependence of Femtosecond Optical Kerr Signals in Bismuth Glasses. IEEE Photonics<br>Technology Letters, 2009, 21, 1606-1608.                                                                      | 2.5 | 6         |
| 172 | Multi-Frame Observation of a Single Femtosecond Laser Pulse Propagation Using an Echelon and<br>Optical Polarigraphy Technique. IEEE Photonics Technology Letters, 2013, 25, 1879-1881.                         | 2.5 | 6         |
| 173 | The influence of turbid medium properties on object visibility in optical Kerr gated imaging. Laser<br>Physics, 2014, 24, 015401.                                                                               | 1.2 | 6         |
| 174 | Rapid Fabrication of Large-Area Concave Microlens Array on ZnSe. Micromachines, 2021, 12, 458.                                                                                                                  | 2.9 | 6         |
| 175 | Miniaturized 3-D Solenoid-Type Micro-Heaters in Coordination With 3-D Microfluidics. Journal of Microelectromechanical Systems, 2017, 26, 588-592.                                                              | 2.5 | 6         |
| 176 | High Time-Resolved Three-Dimensional Imaging Using Ultrafast Optical Kerr Gate of Bismuth Glass. IEEE<br>Photonics Technology Letters, 2011, 23, 471-473.                                                       | 2.5 | 5         |
| 177 | Elimination of the coherent effect in the optical Kerr measurement of bismuth glass using supercontinuum. Journal of Applied Physics, 2011, 109, 123104.                                                        | 2.5 | 5         |
| 178 | High Time-Resolved Imaging of Targets in Turbid Media Using Ultrafast Optical Kerr Gate. Chinese<br>Physics Letters, 2012, 29, 024207.                                                                          | 3.3 | 5         |
| 179 | Ultrafast dynamics of high-contrast nano-grating formation on gold film induced by temporally shaped femtosecond laser. Chemical Physics Letters, 2014, 597, 153-157.                                           | 2.6 | 5         |
| 180 | Research on hot embossing process of high fill factor microlens array. Microsystem Technologies, 2015, 21, 2109-2114.                                                                                           | 2.0 | 5         |

| #   | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Localized surface plasmon resonances in core-embedded heterogeneous nano-bowtie antenna. Applied<br>Physics B: Lasers and Optics, 2015, 120, 47-51.                                                                                                                           | 2.2 | 5         |
| 182 | Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity,<br>Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and<br>Underwater Superaerophobicity: A Mini-Review. Frontiers in Chemistry, 2020, 8, 828. | 3.6 | 5         |
| 183 | Fabrication of Three-Dimensional Microvalves of Internal Nested Structures Inside Fused Silica.<br>Micromachines, 2021, 12, 43.                                                                                                                                               | 2.9 | 5         |
| 184 | Laser Fabrication of Nanoholes on Silica through Surface Window Assisted Nano-Drilling (SWAN).<br>Nanomaterials, 2021, 11, 3340.                                                                                                                                              | 4.1 | 5         |
| 185 | High contrast ballistic imaging using a femtosecond optical Kerr gate of SrTiO3 crystal. Laser Physics<br>Letters, 2013, 10, 055407.                                                                                                                                          | 1.4 | 4         |
| 186 | Ultrafast thermalization dynamics of gold-coated fused silica irradiated by a femtosecond laser.<br>Applied Thermal Engineering, 2014, 71, 56-61.                                                                                                                             | 6.0 | 4         |
| 187 | Ultrafast single-shot imaging of femtosecond pulse propagation in transparent liquids using a<br>supercontinuum and optical polarigraphy. Journal of Optics (United Kingdom), 2014, 16, 015203.                                                                               | 2.2 | 4         |
| 188 | Ultrafast thermalisation dynamics in an Au film excited by a polarization-shaped femtosecond laser double-pulse. Optics and Laser Technology, 2015, 70, 71-75.                                                                                                                | 4.6 | 4         |
| 189 | Highly Stable and Transparent Slippery Surface on Silica Glass Fabricated by Femtosecond Laser.<br>Advanced Engineering Materials, 2022, 24, .                                                                                                                                | 3.5 | 4         |
| 190 | Pump power dependence of Kerr signals in femtosecond cross pump-probe optical Kerr measurements.<br>Optics Express, 2009, 17, 21509.                                                                                                                                          | 3.4 | 3         |
| 191 | Research on the technology of femtosecond laser micromachining based on image edge tracing.<br>Science Bulletin, 2010, 55, 877-881.                                                                                                                                           | 1.7 | 3         |
| 192 | Pump power dependence of femtosecond two-color optical Kerr shutter measurements. Optics Express, 2011, 19, 11196.                                                                                                                                                            | 3.4 | 3         |
| 193 | Facile and flexible fabrication of gapless microlens arrays using a femtosecond laser microfabrication and replication process. , 2012, , .                                                                                                                                   |     | 3         |
| 194 | Efficient optical Kerr gating property of fluorotellurite glass. Optik, 2014, 125, 1444-1447.                                                                                                                                                                                 | 2.9 | 3         |
| 195 | Fabrication of three-dimensional micro-Rogowski coil based on femtosecond laser micromachining.<br>Applied Physics A: Materials Science and Processing, 2015, 120, 669-674.                                                                                                   | 2.3 | 3         |
| 196 | Ultrafast thermal dynamics of nano-ripples formation via laser double pulses excitation. Optics Communications, 2016, 375, 54-57.                                                                                                                                             | 2.1 | 3         |
| 197 | Fano Resonance-Assisted Plasmonic Trapping of Nanoparticles. Plasmonics, 2017, 12, 627-630.                                                                                                                                                                                   | 3.4 | 3         |
| 198 | 3D integrated coreless microtransformer processed by femtosecond laser micro/nano fabrication.<br>Journal of Micromechanics and Microengineering, 2020, 30, 105002.                                                                                                           | 2.6 | 3         |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Underwater superpolymphobicity: Concept, achievement, and applications. Nano Select, 2021, 2, 1011-1022.                                                                                                                                         | 3.7 | 3         |
| 200 | Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous<br>Noble-Metal-Based Nano-Bowtie Antennas. Nanomaterials, 2021, 11, 759.                                                                                       | 4.1 | 3         |
| 201 | Investigation on femtosecond laser-assisted microfabrication in silica glasses. Proceedings of SPIE, 2010, , .                                                                                                                                   | 0.8 | 2         |
| 202 | Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect. Journal of Optics (United Kingdom), 2012, 14, 045203.                                                                   | 2.2 | 2         |
| 203 | Fabrication qualities of micro-gratings encoding dependence on laser parameters by two-beam femtosecond lasers interference. , 2012, , .                                                                                                         |     | 2         |
| 204 | Efficient optical Kerr gate of<br>Bi <sub>2</sub> O <sub>3</sub> –B <sub>2</sub> O <sub>3</sub> –SiO <sub>2</sub> glass for acquiring<br>high contrast ballistic imaging in turbid medium. Journal of Optics (United Kingdom), 2013, 15, 055202. | 2.2 | 2         |
| 205 | Ultrafast optical Kerr gate of bismuth–plumbum oxide glass for time-gated ballistic imaging. Journal of Modern Optics, 2014, 61, 1452-1456.                                                                                                      | 1.3 | 2         |
| 206 | Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics. , 2015, , .                                                                                                                               |     | 2         |
| 207 | Three dimensional multilayer solenoid microcoils inside silica glass. Optics and Laser Technology, 2016, 76, 29-32.                                                                                                                              | 4.6 | 2         |
| 208 | Femtosecond laser ablated durable superhydrophobic PTFE sheet for oil/water separation. , 2017, , .                                                                                                                                              |     | 2         |
| 209 | Active Tuning of Hybrid Plasmonics in Graphene-Covered Metallic Nanotrench. Technical Physics<br>Letters, 2020, 46, 526-531.                                                                                                                     | 0.7 | 2         |
| 210 | Trapping nanospheres within graphene-based heterogeneous plasmonic nano-trench. Journal of Optics<br>(United Kingdom), 2020, 22, 105002.                                                                                                         | 2.2 | 2         |
| 211 | Fabrication of Periodic Microholes in BiNbO <sub>4</sub> by Femtosecond Laser Pulses for the Applications of 2D Photonic Crystal Waveguide. Ferroelectrics, 2009, 387, 130-136.                                                                  | 0.6 | 1         |
| 212 | Self-focusing in two-color collinear optical Kerr measurements. Optics Communications, 2010, 283, 4346-4349.                                                                                                                                     | 2.1 | 1         |
| 213 | Application of Optical Kerr Gate with SrTiO 3 Crystal in Acquisition of Gated Spectra from a Supercontinuum. Chinese Physics Letters, 2012, 29, 074207.                                                                                          | 3.3 | 1         |
| 214 | The Influence of Coherent Transient Energy Transfer on Femtosecond Time-Resolved Z-Scan<br>Measurements. Chinese Physics Letters, 2012, 29, 104211.                                                                                              | 3.3 | 1         |
| 215 | Superior Method for Measuring Chirp Structure of Femtosecond Supercontinuum Pulse. IEEE<br>Photonics Technology Letters, 2013, 25, 261-263.                                                                                                      | 2.5 | 1         |
| 216 | Pump power dependence of the spatial gating properties of femtosecond optical Kerr effect measurements. Applied Physics B: Lasers and Optics, 2013, 112, 279-283.                                                                                | 2.2 | 1         |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Fabrication and analytical evaluation of threeâ€dimensional microsolenoids achieved in fused silica by femtosecondâ€laserâ€based microsolidifying process. Micro and Nano Letters, 2013, 8, 623-628. | 1.3 | 1         |
| 218 | Tuning near-field enhancements on an off-resonance nanorod dimer via temporally shaped femtosecond laser. Journal Physics D: Applied Physics, 2015, 48, 435102.                                      | 2.8 | 1         |
| 219 | Ultrafast near-field enhancement dynamics in a resonance-mismatched nanorod excited by temporally shaped femtosecond laser double pulses. Optics and Laser Technology, 2016, 77, 6-10.               | 4.6 | 1         |
| 220 | 3D microtransformers with air core inside fused silica. , 2019, , .                                                                                                                                  |     | 1         |
| 221 | A high integration 3D temperature controllable micro-reactor fabricated by femtosecond laser wet etching. , 2019, , .                                                                                |     | 1         |
| 222 | Femtosecond Laser Induced Underwater Superoleophobic Surfaces. MATEC Web of Conferences, 2015, 32, 02005.                                                                                            | 0.2 | 0         |
| 223 | Ultrafast thermal excitation behaviors of Au films irradiated by polarization-shaped femtosecond laser. , 2015, , .                                                                                  |     | 0         |
| 224 | Fidelity quantification of mercury(ii) ion via circumventing biothiols-induced sequestration in enzymatic amplification system. RSC Advances, 2016, 6, 80296-80301.                                  | 3.6 | 0         |
| 225 | Fabrication of 3D electro-thermal micro actuators in silica glass by femtosecond laser wet etch and microsolidics. , 2017, , .                                                                       |     | 0         |
| 226 | Fabrication of the asymmetric double-sided concave microlens arrays by femtosecond laser. , 2017, , .                                                                                                |     | 0         |
| 227 | Micropatterning microlens arrays fabricated by a femtosecond laser wet etch process. , 2017, , .                                                                                                     |     | 0         |
| 228 | Fabrication of close-packed microlens array with superhydrophobicity and high imaging performance. , 2019, , .                                                                                       |     | 0         |
| 229 | Molecular-Scale Plasmon Trapping via a Graphene-Hybridized Tip-Substrate System. Materials, 2022, 15, 4627.                                                                                          | 2.9 | 0         |