Anne Rensing-Ehl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5760658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nature Medicine, 2014, 20, 1410-1416.	30.7	723
2	Deficiency of Innate and Acquired Immunity Caused by an <i>IKBKB</i> Mutation. New England Journal of Medicine, 2013, 369, 2504-2514.	27.0	161
3	Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clinical Immunology, 2015, 159, 84-92.	3.2	96
4	The expansion of human T-bet ^{high} CD21 ^{low} B cells is T cell dependent. Science Immunology, 2021, 6, eabh0891.	11.9	82
5	Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood, 2016, 128, 227-238.	1.4	77
6	Primary and secondary hemophagocytic lymphohistiocytosis have different patterns of Tâ€cell activation, differentiation and repertoire. European Journal of Immunology, 2017, 47, 364-373.	2.9	69
7	Germline TET2 loss of function causes childhood immunodeficiency and lymphoma. Blood, 2020, 136, 1055-1066.	1.4	58
8	Abnormally differentiated CD4+ or CD8+ T cells with phenotypic and genetic features of double negative T cells in human Fas deficiency. Blood, 2014, 124, 851-860.	1.4	54
9	Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica, 2017, 102, e52-e56.	3.5	49
10	Activated <scp>PI</scp> 3KÎ′ syndrome type 2: Two patients, a novel mutation, and review of the literature. Pediatric Allergy and Immunology, 2016, 27, 640-644.	2.6	46
11	Distinct molecular response patterns of activating STAT3 mutations associate with penetrance of lymphoproliferation and autoimmunity. Clinical Immunology, 2020, 210, 108316.	3.2	40
12	SYK expression endows human ZAP70-deficient CD8 T cells with residual TCR signaling. Clinical Immunology, 2015, 161, 103-109.	3.2	38
13	Clinical and Molecular Heterogeneity of RTEL1 Deficiency. Frontiers in Immunology, 2017, 8, 449.	4.8	35
14	Frequency, function and CLA expression of CD4+CD25+FOXP3+ regulatory T cells in bullous pemphigoid. Experimental Dermatology, 2007, 16, 13-21.	2.9	33
15	A distinct CD38+CD45RA+ population of CD4+, CD8+, and double-negative T cells is controlled by FAS. Journal of Experimental Medicine, 2021, 218, .	8.5	25
16	lgG4-related disease in autoimmune lymphoproliferative syndrome. Clinical Immunology, 2017, 180, 97-99.	3.2	5
17	Complete CD95/FAS deficiency due to complex homozygous germline TNFRSF6 mutations in an adult patient with mild autoimmune lymphoproliferative syndrome (ALPS). Clinical Immunology, 2021, 228, 108757.	3.2	3
18	Hyperactive mTOR Pathway Promotes Lymphoproliferation and Abnormal Differentiation in Human Autoimmune Lymphoproliferative Syndrome. Blood, 2015, 126, 1020-1020.	1.4	1