
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5760459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell, 2015, 160, 447-460.	28.9	1,036
2	Quiescent haematopoietic stem cells are activated by IFN-Î ³ in response to chronic infection. Nature, 2010, 465, 793-797.	27.8	756
3	Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science, 2015, 347, 266-269.	12.6	386
4	Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria. Frontiers in Physiology, 2018, 9, 1534.	2.8	375
5	Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host and Microbe, 2016, 19, 311-322.	11.0	330
6	Inflammatory signals regulate hematopoietic stem cells. Trends in Immunology, 2011, 32, 57-65.	6.8	310
7	Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science, 2015, 347, 269-273.	12.6	308
8	Hematopoietic Fingerprints: An Expression Database of Stem Cells and Their Progeny. Cell Stem Cell, 2007, 1, 578-591.	11.1	279
9	Discovery of a proteinaceous cellular receptor for a norovirus. Science, 2016, 353, 933-936.	12.6	241
10	Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature, 2015, 521, 90-93.	27.8	221
11	Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood, 2017, 129, 729-739.	1.4	205
12	Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science, 2018, 360, 204-208.	12.6	187
13	Expression of <i>Ifnlr1</i> on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus. Journal of Virology, 2017, 91, .	3.4	131
14	A Stem-Cell-Derived Platform Enables Complete Cryptosporidium Development InÂVitro and Genetic Tractability. Cell Host and Microbe, 2019, 26, 123-134.e8.	11.0	116
15	Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell, 2019, 179, 644-658.e13.	28.9	106
16	An Arabidopsis Basic Helix-Loop-Helix Leucine Zipper Protein Modulates Metal Homeostasis and Auxin Conjugate Responsiveness. Genetics, 2006, 174, 1841-1857.	2.9	98
17	Paneth cell defects in Crohn's disease patients promote dysbiosis. JCI Insight, 2016, 1, e86907.	5.0	91
18	The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nature Microbiology, 2020, 5, 84-92.	13.3	87

#	Article	IF	CITATIONS
19	Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. Cell Host and Microbe, 2016, 19, 102-113.	11.0	83
20	Viral complementation of immunodeficiency confers protection against enteric pathogens via interferon-λ. Nature Microbiology, 2019, 4, 1120-1128.	13.3	83
21	lrgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood, 2011, 118, 1525-1533.	1.4	72
22	Norovirus Cell Tropism Is Determined by Combinatorial Action of a Viral Non-structural Protein and Host Cytokine. Cell Host and Microbe, 2017, 22, 449-459.e4.	11.0	70
23	Hematopoiesis and the bacterial microbiome. Blood, 2018, 132, 559-564.	1.4	62
24	Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections. Frontiers in Immunology, 2017, 8, 749.	4.8	61
25	Norovirus Regulation by Host and Microbe. Trends in Molecular Medicine, 2016, 22, 1047-1059.	6.7	58
26	A Secreted Viral Nonstructural Protein Determines Intestinal Norovirus Pathogenesis. Cell Host and Microbe, 2019, 25, 845-857.e5.	11.0	57
27	Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathologica Communications, 2021, 9, 40.	5.2	55
28	Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell, 2021, 184, 1214-1231.e16.	28.9	48
29	Distinct Effects of Type I and III Interferons on Enteric Viruses. Viruses, 2018, 10, 46.	3.3	47
30	Phages and Human Health: More Than Idle Hitchhikers. Viruses, 2019, 11, 587.	3.3	47
31	CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLoS Pathogens, 2020, 16, e1008242.	4.7	44
32	Microbiota regulation of viral infections through interferon signaling. Trends in Microbiology, 2022, 30, 778-792.	7.7	41
33	A Human Gain-of-Function STING Mutation Causes Immunodeficiency and Gammaherpesvirus-Induced Pulmonary Fibrosis in Mice. Journal of Virology, 2019, 93, .	3.4	40
34	HOIL1 Is Essential for the Induction of Type I and III Interferons by MDA5 and Regulates Persistent Murine Norovirus Infection. Journal of Virology, 2018, 92, .	3.4	39
35	Differential roles of interferons in innate responses to mucosal viral infections. Trends in Immunology, 2021, 42, 1009-1023.	6.8	39
36	Select autophagy genes maintain quiescence of tissue-resident macrophages and increase susceptibility to Listeria monocytogenes. Nature Microbiology, 2020, 5, 272-281.	13.3	36

#	Article	IF	CITATIONS
37	The Complex Interactions Between Rotavirus and the Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10, 586751.	3.9	36
38	CD48 on hematopoietic progenitors regulates stem cells and suppresses tumor formation. Blood, 2011, 118, 80-87.	1.4	35
39	Disruption of Type III Interferon (IFN) Genes <i>Ifnl2</i> and <i>Ifnl3</i> Recapitulates Loss of the Type III IFN Receptor in the Mucosal Antiviral Response. Journal of Virology, 2019, 93, .	3.4	35
40	Murine norovirus infection does not cause major disruptions in the murine intestinal microbiota. Microbiome, 2013, 1, 7.	11.1	32
41	The dark side of the gut: Virome–host interactions in intestinal homeostasis and disease. Journal of Experimental Medicine, 2021, 218, .	8.5	29
42	Interactions between noroviruses, the host, and the microbiota. Current Opinion in Virology, 2019, 37, 1-9.	5.4	28
43	Norovirus encounters in the gut: multifaceted interactions and disease outcomes. Mucosal Immunology, 2019, 12, 1259-1267.	6.0	26
44	Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses, 2020, 12, 904.	3.3	26
45	Norovirus interactions with the commensal microbiota. PLoS Pathogens, 2018, 14, e1007183.	4.7	25
46	Homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium. ELife, 2022, 11, .	6.0	25
47	Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunology, 2021, 14, 751-761.	6.0	23
48	Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants. Cell Host and Microbe, 2022, 30, 110-123.e5.	11.0	23
49	CD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus. Journal of Virology, 2021, 95, .	3.4	17
50	The bacterial microbiota regulates normal hematopoiesis via metabolite-induced type 1 interferon signaling. Blood Advances, 2022, 6, 1754-1765.	5.2	14
51	LysMD3 is a type II membrane protein without an role in the response to a range of pathogens. Journal of Biological Chemistry, 2018, 293, 6022-6038.	3.4	11
52	Norovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid. PLoS Pathogens, 2021, 17, e1009402.	4.7	11
53	Compensatory Mutations in Predicted Metal Transporters Modulate Auxin Conjugate Responsiveness in <i>Arabidopsis</i> . G3: Genes, Genomes, Genetics, 2013, 3, 131-141.	1.8	10
54	Transferrable protection by gut microbes against STING-associated lung disease. Cell Reports, 2021, 35, 109113.	6.4	10

#	Article	IF	CITATIONS
55	Chronic <i>Toxoplasma gondii</i> infection enhances susceptibility to colitis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
56	Rotavirus susceptibility of antibiotic-treated mice ascribed to diminished expression of interleukin-22. PLoS ONE, 2021, 16, e0247738.	2.5	9
57	T cell response kinetics determines neuroinfection outcomes during murine HSV infection. JCI Insight, 2020, 5, .	5.0	9
58	A Human STAT1 Gain-of-Function Mutation Impairs CD8 ⁺ T Cell Responses against Gammaherpesvirus 68. Journal of Virology, 2019, 93, .	3.4	8
59	A role for the microbiota in complex regional pain syndrome?. Neurobiology of Pain (Cambridge, Mass) Tj ETQq1 J	0.78431	4 _f gBT /Over
60	Enteric viruses seize their immunomodulatory niche. Cell Host and Microbe, 2021, 29, 858-861.	11.0	6
61	Intestinal antiviral signaling is controlled by autophagy gene <i>Epg5</i> independent of the microbiota. Autophagy, 2022, 18, 1062-1077.	9.1	6
62	O-011â€fPaneth Cell Phenotypes Define a Subtype of Pediatric Crohn's Disease Through Alterations in Host-Microbial Interactions. Inflammatory Bowel Diseases, 2016, 22, S4.	1.9	5
63	Experimental Methods to Study the Pathogenesis of Human Enteric RNA Viruses. Viruses, 2021, 13, 975.	3.3	5
64	Single-cell genomics for resolution of conserved bacterial genes and mobile genetic elements of the human intestinal microbiota using flow cytometry. Gut Microbes, 2022, 14, 2029673.	9.8	5
65	Viruses RIG up intestinal immunity. Nature Immunology, 2019, 20, 1563-1564.	14.5	4
66	CD300LF Polymorphisms of Inbred Mouse Strains Confer Resistance to Murine Norovirus Infection in a Cell Type-Dependent Manner. Journal of Virology, 2020, 94, .	3.4	3
67	lrgm1 Is a Negative Regulator of Interferon-Gamma Signaling in Hematopoietic Stem Cells Blood, 2009, 114, 382-382.	1.4	2
68	Crossing the T's on Norovirus. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1543-1544.	4.5	0
69	Interferon-Gamma Is a Critical Regulator of the Hematopoietic Stem Cell Response to Chronic Infection Blood, 2009, 114, 2549-2549.	1.4	Ο
70	Antibiotics Impair Murine Hematopoiesis By Depleting Intestinal Microbiota. Blood, 2016, 128, 2664-2664.	1.4	0
71	The Bacterial Microbiota Promotes Normal Hematopoiesis Via Interferon Alpha and NOD1 Signaling Pathways. Blood, 2021, 138, 1080-1080.	1.4	Ο
72	2021 – THE BACTERIAL MICROBIOTA PROMOTES NORMAL HEMATOPOIESIS VIA INTERFERON ALPHA AND NOU SIGNALING PATHWAYS. Experimental Hematology, 2021, 100, S37-S38.	0.4	0