
Jianbo Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Singleâ€Component Whiteâ€Light Emitters with Excellent Color Rendering Indexes and High Photoluminescence Quantum Efficiencies. Advanced Optical Materials, 2022, 10, .	7.3	18
2	Ultrahigh Aggregation Induced Emission Efficiency in Multitwist-Based Luminogens under High Pressure. Journal of Physical Chemistry Letters, 2022, 13, 136-141.	4.6	14
3	Highly luminescent zero-dimensional lead-free manganese halides for β-ray scintillation. Nano Research, 2022, 15, 8486-8492.	10.4	18
4	Generating and Capturing Secondary Hot Carriers in Monolayer Tungsten Dichalcogenides. Journal of Physical Chemistry Letters, 2022, 13, 5703-5710.	4.6	2
5	Highly Luminescent Zero-Dimensional Organic Copper Halide with Low-Loss Optical Waveguides and Highly Polarized Emission. , 2022, 4, 1446-1452.		21
6	Efficient Infrared Solar Cells Employing Quantum Dot Solids with Strong Interâ€Dot Coupling and Efficient Passivation. Advanced Functional Materials, 2021, 31, 2006864.	14.9	16
7	Turning on high-rate-capability fluorescence resonance energy transfer in a quantum dot-molecule system <i>via</i> high pressure. Journal of Materials Chemistry C, 2021, 9, 14388-14393.	5.5	6
8	Investigation of Hot Carrier Cooling Dynamics in Monolayer MoS ₂ . Journal of Physical Chemistry Letters, 2021, 12, 861-868.	4.6	20
9	In-situ observation of trapped carriers in organic metal halide perovskite films with ultra-fast temporal and ultra-high energetic resolutions. Nature Communications, 2021, 12, 1636.	12.8	11
10	Efficient Dual-Band White-Light Emission with High Color Rendering from Zero-Dimensional Organic Copper Iodide. ACS Applied Materials & Interfaces, 2021, 13, 22749-22756.	8.0	57
11	Highly Luminescent Zero-Dimensional Organic Copper Halides for X-ray Scintillation. Journal of Physical Chemistry Letters, 2021, 12, 6919-6926.	4.6	95
12	Förster resonance energy transfer outpaces Auger recombination in CdTe/CdS quantum dots-rhodamine101 molecules system upon compression. Optics Express, 2021, 29, 27171.	3.4	10
13	Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. ACS Nano, 2021, 15, 3376-3386.	14.6	32
14	Realizing Near-Unity Quantum Efficiency of Zero-Dimensional Antimony Halides through Metal Halide Structural Modulation. ACS Applied Materials & Interfaces, 2021, 13, 58908-58915.	8.0	36
15	Cationâ€Exchange Synthesis of Highly Monodisperse PbS Quantum Dots from ZnS Nanorods for Efficient Infrared Solar Cells. Advanced Functional Materials, 2020, 30, 1907379.	14.9	80
16	Synthesis and transformation of zero-dimensional Cs3BiX6 (X = Cl, Br) perovskite-analogue nanocrystals. Nano Research, 2020, 13, 282-291.	10.4	79
17	Pressure tuning of electron transfer rate in near-infrared PbS-anthraquinone complexes. Applied Physics Letters, 2020, 117, .	3.3	6
18	Lead-Free Cs ₄ CuSb ₂ Cl ₁₂ Layered Double Perovskite Nanocrystals. Journal of the American Chemical Society, 2020, 142, 11927-11936.	13.7	131

Jianbo Gao

#	Article	IF	CITATIONS
19	Photophysics in Cs ₃ Cu ₂ X ₅ (X = Cl, Br, or I): Highly Luminescent Self-Trapped Excitons from Local Structure Symmetrization. Chemistry of Materials, 2020, 32, 3462-3468.	6.7	177

The correlation between phase transition and photoluminescence properties of CsPbX₃(X) Tj ETQq0 Q 0 rgBT /Qverlock 10

21	Facet Control for Trapâ€State Suppression in Colloidal Quantum Dot Solids. Advanced Functional Materials, 2020, 30, 2000594.	14.9	60
22	Efficient and Reabsorptionâ€Free Radioluminescence in Cs ₃ Cu ₂ I ₅ Nanocrystals with Selfâ€Trapped Excitons. Advanced Science, 2020, 7, 2000195.	11.2	282
23	Ultrahigh Hot Carrier Transient Photocurrent in Nanocrystal Arrays by Auger Recombination. Nano Letters, 2019, 19, 4804-4810.	9.1	16
24	Tunable electron transfer rate in a CdSe/ZnS-based complex with different anthraquinone chloride substitutes. Scientific Reports, 2019, 9, 7756.	3.3	5
25	Pressure-Induced Tunable Electron Transfer and Auger Recombination Rates in CdSe/ZnS Quantum Dot–Anthraquinone Complexes. Journal of Physical Chemistry Letters, 2019, 10, 3064-3070.	4.6	30
26	Manipulating Charge Transfer from Core to Shell in CdSe/CdS/Au Heterojunction Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 48551-48555.	8.0	7
27	Carrier Transport Dynamics in High Speed Black Phosphorus Photodetectors. ACS Photonics, 2018, 5, 1412-1417.	6.6	15
28	In Situ Tuning the Reactivity of Selenium Precursor To Synthesize Wide Range Size, Ultralarge-Scale, and Ultrastable PbSe Quantum Dots. Chemistry of Materials, 2018, 30, 982-989.	6.7	27
29	Colloidal synthesis of lead-free all-inorganic cesium bismuth bromide perovskite nanoplatelets. CrystEngComm, 2018, 20, 7473-7478.	2.6	44
30	Electron Beam Induced Formation of Hollow RbBr Nanocubes. Journal of Physical Chemistry C, 2018, 122, 28347-28350.	3.1	0
31	Sub-50 picosecond to microsecond carrier transport dynamics in pentacene thin films. Applied Physics Letters, 2018, 113, 183509.	3.3	8
32	Solution-processed solar-blind deep ultraviolet photodetectors based on strongly quantum confined ZnS quantum dots. Journal of Materials Chemistry C, 2018, 6, 11266-11271.	5.5	46
33	Electron–hole exchange blockade and memory-less recombination in photoexcitedÂfilmsÂof colloidal quantum dots. Nature Physics, 2017, 13, 604-610.	16.7	19
34	Solution-Processed, High-Speed, and High-Quantum-Efficiency Quantum Dot Infrared Photodetectors. ACS Photonics, 2016, 3, 1217-1222.	6.6	73
35	Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nature Communications, 2015, 6, 8185.	12.8	56
36	Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell. Science, 2011, 334, 1530-1533.	12.6	1,511