
## Miska Luoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/576038/publications.pdf Version: 2024-02-01



MISKA LUOTO

| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.                   | 4.7  | 1,224     |
| 2  | Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 2009, 15, 59-69.                                                                           | 1.9  | 990       |
| 3  | The importance of biotic interactions for modelling species distributions under climate change.<br>Global Ecology and Biogeography, 2007, 16, 743-753.                                                | 2.7  | 953       |
| 4  | Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in<br>Physical Geography, 2006, 30, 751-777.                                                               | 1.4  | 787       |
| 5  | Global buffering of temperatures under forest canopies. Nature Ecology and Evolution, 2019, 3, 744-749.                                                                                               | 3.4  | 374       |
| 6  | Forest microclimates and climate change: Importance, drivers and future research agenda. Global<br>Change Biology, 2021, 27, 2279-2297.                                                               | 4.2  | 330       |
| 7  | Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 2018, 9, 5147.                                                                                         | 5.8  | 327       |
| 8  | A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.                                      | 2.4  | 290       |
| 9  | Distance decay of similarity in freshwater communities: do macro―and microorganisms follow the same rules?. Global Ecology and Biogeography, 2012, 21, 365-375.                                       | 2.7  | 281       |
| 10 | Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 2009, 15,<br>732-743.                                                                                       | 4.2  | 254       |
| 11 | Does the interpolation accuracy of species distribution models come at the expense of transferability?. Ecography, 2012, 35, 276-288.                                                                 | 2.1  | 200       |
| 12 | Local temperatures inferred from plant communities suggest strong spatial buffering of climate<br>warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481. | 4.2  | 200       |
| 13 | Uncertainty of bioclimate envelope models based on the geographical distribution of species. Global<br>Ecology and Biogeography, 2005, 14, 575-584.                                                   | 2.7  | 180       |
| 14 | What we use is not what we know: environmental predictors in plant distribution models. Journal of<br>Vegetation Science, 2016, 27, 1308-1322.                                                        | 1.1  | 165       |
| 15 | The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecological Modelling, 2009, 220, 3512-3520.                                                 | 1.2  | 150       |
| 16 | Impacts of permafrost degradation on infrastructure. Nature Reviews Earth & Environment, 2022, 3, 24-38.                                                                                              | 12.2 | 150       |
| 17 | Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models.<br>Remote Sensing of Environment, 2020, 239, 111626.                                                 | 4.6  | 142       |
| 18 | Human population dynamics in Europe over the Last Glacial Maximum. Proceedings of the National<br>Academy of Sciences of the United States of America, 2015, 112, 8232-8237.                          | 3.3  | 140       |

Miska Luoto

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic<br>models. Global Change Biology, 2008, 14, 483-494.                                                       | 4.2 | 135       |
| 20 | SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.                                                                                                        | 4.2 | 122       |
| 21 | Recent vegetation changes at the highâ€latitude tree line ecotone are controlled by geomorphological disturbance, productivity and diversity. Global Ecology and Biogeography, 2010, 19, 810-821.            | 2.7 | 118       |
| 22 | Testing species distribution models across space and time: high latitude butterflies and recent warming. Global Ecology and Biogeography, 2013, 22, 1293-1303.                                               | 2.7 | 113       |
| 23 | Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.                                                                                                                                 | 4.2 | 113       |
| 24 | Determinants of the biogeographical distribution of butterflies in boreal regions. Journal of Biogeography, 2006, 33, 1764-1778.                                                                             | 1.4 | 111       |
| 25 | Soil moisture's underestimated role in climate change impact modelling in lowâ€energy systems. Global<br>Change Biology, 2013, 19, 2965-2975.                                                                | 4.2 | 110       |
| 26 | Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sensing of Environment, 2019, 224, 119-132.                             | 4.6 | 100       |
| 27 | Snow cover is a neglected driver of Arctic biodiversity loss. Nature Climate Change, 2018, 8, 997-1001.                                                                                                      | 8.1 | 94        |
| 28 | Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape.<br>Biodiversity and Conservation, 2012, 21, 3487-3506.                                                     | 1.2 | 87        |
| 29 | Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1232-1237. | 3.3 | 86        |
| 30 | Monthly microclimate models in a managed boreal forest landscape. Agricultural and Forest<br>Meteorology, 2018, 250-251, 147-158.                                                                            | 1.9 | 84        |
| 31 | Statistical Forecasting of Current and Future Circumâ€Arctic Ground Temperatures and Active Layer<br>Thickness. Geophysical Research Letters, 2018, 45, 4889-4898.                                           | 1.5 | 83        |
| 32 | Statistical upscaling of ecosystem CO <sub>2</sub> fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Global Change Biology, 2021, 27, 4040-4059.                  | 4.2 | 83        |
| 33 | Climate change and the future distributions of aquatic macrophytes across boreal catchments.<br>Journal of Biogeography, 2011, 38, 383-393.                                                                  | 1.4 | 81        |
| 34 | The mossy north: an inverse latitudinal diversity gradient in European bryophytes. Scientific Reports, 2016, 6, 25546.                                                                                       | 1.6 | 74        |
| 35 | Assessing the vulnerability of European butterflies to climate change using multiple criteria.<br>Biodiversity and Conservation, 2010, 19, 695-723.                                                          | 1.2 | 71        |
| 36 | The importance of snow in species distribution models of arctic vegetation. Ecography, 2018, 41, 1024-1037.                                                                                                  | 2.1 | 71        |

MISKA LUOTO

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Vegetation Mediates Soil Temperature and Moisture in Arctic-Alpine Environments. Arctic, Antarctic, and Alpine Research, 2013, 45, 429-439.                                  | 0.4 | 70        |
| 38 | New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth System Science Data, 2022, 14, 865-884.        | 3.7 | 68        |
| 39 | From white to green: Snow cover loss and increased vegetation productivity in the European Alps.<br>Science, 2022, 376, 1119-1122.                                           | 6.0 | 64        |
| 40 | Incorporating dominant species as proxies for biotic interactions strengthens plant community models. Journal of Ecology, 2014, 102, 767-775.                                | 1.9 | 63        |
| 41 | Biotic interactions boost spatial models of species richness. Ecography, 2015, 38, 913-921.                                                                                  | 2.1 | 63        |
| 42 | Carnivore-livestock conflicts: determinants of wolf (Canis lupus) depredation on sheep farms in<br>Finland. Biodiversity and Conservation, 2009, 18, 3503-3517.              | 1.2 | 60        |
| 43 | Applying probabilistic projections of climate change with impact models: a case study for sub-arctic palsa mires in Fennoscandia. Climatic Change, 2010, 99, 515-534.        | 1.7 | 59        |
| 44 | Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 2018, 27, 1402-1411.                                               | 2.7 | 57        |
| 45 | ForestTemp – Subâ€canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.                                                          | 4.2 | 57        |
| 46 | Outcomes of biotic interactions are dependent on multiple environmental variables. Journal of Vegetation Science, 2014, 25, 1024-1032.                                       | 1.1 | 54        |
| 47 | Fine-scale tundra vegetation patterns are strongly related to winter thermal conditions. Nature Climate Change, 2020, 10, 1143-1148.                                         | 8.1 | 52        |
| 48 | Horizontal, but not vertical, biotic interactions affect fineâ€scale plant distribution patterns in a<br>lowâ€energy system. Ecology, 2013, 94, 671-682.                     | 1.5 | 51        |
| 49 | Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments.<br>Scientific Data, 2019, 6, 190037.                                      | 2.4 | 51        |
| 50 | Earth surface processes drive the richness, composition and occurrence of plant species in an arctic–alpine environment. Journal of Vegetation Science, 2014, 25, 45-54.     | 1.1 | 50        |
| 51 | Predicted insect diversity declines under climate change in an already impoverished region. Journal of<br>Insect Conservation, 2010, 14, 485-498.                            | 0.8 | 49        |
| 52 | A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish<br>Lapland. Earth Surface Processes and Landforms, 2008, 33, 2241-2254. | 1.2 | 48        |
| 53 | Past climateâ€driven range shifts and population genetic diversity in arctic plants. Journal of<br>Biogeography, 2016, 43, 461-470.                                          | 1.4 | 48        |
| 54 | Modelling soil moisture in a highâ€ŀatitude landscape using LiDAR and soil data. Earth Surface<br>Processes and Landforms, 2018, 43, 1019-1031.                              | 1.2 | 48        |

Μιςκα Luoto

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Statistical consensus methods for improving predictive geomorphology maps. Computers and Geosciences, 2009, 35, 615-625.                                                                    | 2.0 | 47        |
| 56 | Interaction of geomorphic and ecologic features across altitudinal zones in a subarctic landscape.<br>Geomorphology, 2009, 112, 324-333.                                                    | 1.1 | 47        |
| 57 | A North European pollen–climate calibration set: analysing the climatic responses of a biological proxy using novel regression tree methods. Quaternary Science Reviews, 2012, 45, 95-110.  | 1.4 | 47        |
| 58 | Revealing topoclimatic heterogeneity using meteorological station data. International Journal of Climatology, 2017, 37, 544-556.                                                            | 1.5 | 47        |
| 59 | Decreasing snow cover alters functional composition and diversity of Arctic tundra. Proceedings of the United States of America, 2020, 117, 21480-21487.                                    | 3.3 | 47        |
| 60 | The regional species richness and genetic diversity of <scp>A</scp> rctic vegetation reflect both past glaciations and current climate. Global Ecology and Biogeography, 2016, 25, 430-442. | 2.7 | 44        |
| 61 | Primary succession, disturbance and productivity drive complex species richness patterns on land uplift beaches. Journal of Vegetation Science, 2015, 26, 267-277.                          | 1.1 | 42        |
| 62 | Holocene fen–bog transitions, current status in Finland and future perspectives. Holocene, 2017, 27,<br>752-764.                                                                            | 0.9 | 42        |
| 63 | The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. International Journal of Applied Earth Observation and Geoinformation, 2017, 56, 44-53.                    | 1.4 | 42        |
| 64 | Dispersal ability links to crossâ€scale species diversity patterns across the Eurasian Arctic tundra.<br>Global Ecology and Biogeography, 2012, 21, 851-860.                                | 2.7 | 41        |
| 65 | The current state of CO <sub>2</sub> flux chamber studies in the Arctic tundra. Progress in Physical Geography, 2018, 42, 162-184.                                                          | 1.4 | 41        |
| 66 | Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nature Communications, 2018, 9, 2851.                                                                  | 5.8 | 41        |
| 67 | Biogeophysical controls on soil-atmosphere thermal differences: implications on warming Arctic ecosystems. Environmental Research Letters, 2018, 13, 074003.                                | 2.2 | 41        |
| 68 | Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities. Global Ecology and Biogeography, 2022, 31, 1399-1421.                               | 2.7 | 40        |
| 69 | Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches.<br>Global Ecology and Biogeography, 2015, 24, 1401-1412.                                 | 2.7 | 39        |
| 70 | Geomorphological factors predict water quality in boreal rivers. Earth Surface Processes and Landforms, 2015, 40, 1989-1999.                                                                | 1.2 | 39        |
| 71 | Climate is an important driver for stream diatom distributions. Global Ecology and Biogeography, 2016, 25, 198-206.                                                                         | 2.7 | 39        |
| 72 | Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss<br>Alps. Earth Surface Processes and Landforms, 2019, 44, 3093-3107.                       | 1.2 | 39        |

MISKA LUOTO

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Maintaining forest cover to enhance temperature buffering under future climate change. Science of the Total Environment, 2022, 810, 151338.                                                                            | 3.9 | 39        |
| 74 | Inclusion of soil data improves the performance of bioclimatic envelope models for insect species distributions in temperate Europe. Journal of Biogeography, 2009, 36, 1459-1473.                                     | 1.4 | 38        |
| 75 | Geomorphological disturbance is necessary for predicting fineâ€scale species distributions. Ecography, 2013, 36, 800-808.                                                                                              | 2.1 | 38        |
| 76 | Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Diversity and Distributions, 2019, 25, 809-821.                                                                                       | 1.9 | 38        |
| 77 | Modelling the occurrence of threatened plant species in taiga landscapes: methodological and ecological perspectives. Journal of Biogeography, 2008, 35, 1888-1905.                                                    | 1.4 | 37        |
| 78 | Biotic interactions drive species occurrence and richness in dynamic beach environments. Plant<br>Ecology, 2013, 214, 1455-1466.                                                                                       | 0.7 | 37        |
| 79 | Reconstructing palaeoclimatic variables from fossil pollen using boosted regression trees:<br>comparison and synthesis with other quantitative reconstruction methods. Quaternary Science<br>Reviews, 2014, 88, 69-81. | 1.4 | 36        |
| 80 | Climate limitation at the cold edge: contrasting perspectives from species distribution modelling and a transplant experiment. Ecography, 2020, 43, 637-647.                                                           | 2.1 | 35        |
| 81 | ENVIRONMENTAL DETERMINANTS OF WATER QUALITY IN BOREAL RIVERS BASED ON PARTITIONING METHODS.<br>River Research and Applications, 2012, 28, 1034-1046.                                                                   | 0.7 | 34        |
| 82 | New insights into the environmental factors controlling the ground thermal regime across the<br>Northern Hemisphere: a comparison between permafrost and non-permafrost areas. Cryosphere, 2019,<br>13, 693-707.       | 1.5 | 34        |
| 83 | Water as a resource, stress and disturbance shaping tundra vegetation. Oikos, 2019, 128, 811-822.                                                                                                                      | 1.2 | 34        |
| 84 | The need for largeâ€scale distribution data to estimate regional changes in species richness under future climate change. Diversity and Distributions, 2017, 23, 1393-1407.                                            | 1.9 | 32        |
| 85 | Landscape scale determinants of periglacial features in subarctic Finland: a grid-based modelling approach. Permafrost and Periglacial Processes, 2007, 18, 115-127.                                                   | 1.5 | 31        |
| 86 | Statistical modelling predicts almost complete loss of major periglacial processes in Northern<br>Europe by 2100. Nature Communications, 2017, 8, 515.                                                                 | 5.8 | 31        |
| 87 | The effect of summer drought on the predictability of local extinctions in a butterfly metapopulation.<br>Conservation Biology, 2020, 34, 1503-1511.                                                                   | 2.4 | 31        |
| 88 | Scale matters–A multi-resolution study of the determinants of patterned ground activity in subarctic<br>Finland. Geomorphology, 2006, 80, 282-294.                                                                     | 1.1 | 30        |
| 89 | Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation.<br>Environmental Research Letters, 2016, 11, 124028.                                                                    | 2.2 | 28        |
| 90 | Machine-learning based reconstructions of primary and secondary climate variables from North<br>American and European fossil pollen data. Scientific Reports, 2019, 9, 15805.                                          | 1.6 | 28        |

Μιςκα Luoto

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | High potential for loss of permafrost landforms in a changing climate. Environmental Research<br>Letters, 2020, 15, 104065.                                                                 | 2.2 | 28        |
| 92  | Some like it hot: microclimatic variation affects the abundance and movements of a critically endangered dung beetle. Insect Conservation and Diversity, 2009, 2, 232-241.                  | 1.4 | 27        |
| 93  | Successful translocation of the threatened Clouded Apollo butterfly (Parnassius mnemosyne) and metapopulation establishment in southern Finland. Biological Conservation, 2015, 190, 51-59. | 1.9 | 27        |
| 94  | Integrating climate and local factors for geomorphological distribution models. Earth Surface<br>Processes and Landforms, 2014, 39, 1729-1740.                                              | 1.2 | 26        |
| 95  | Selection of den sites by wolves in boreal forests in Finland. Journal of Zoology, 2010, 281, 99-104.                                                                                       | 0.8 | 25        |
| 96  | Predictability in species distributions: a global analysis across organisms and ecosystems. Global<br>Ecology and Biogeography, 2014, 23, 1264-1274.                                        | 2.7 | 25        |
| 97  | Potential for extreme loss in high-latitude Earth surface processes due to climate change.<br>Geophysical Research Letters, 2014, 41, 3914-3924.                                            | 1.5 | 25        |
| 98  | Consistent trait–environment relationships within and across tundra plant communities. Nature<br>Ecology and Evolution, 2021, 5, 458-467.                                                   | 3.4 | 25        |
| 99  | In-depth characterization of denitrifier communities across different soil ecosystems in the tundra.<br>Environmental Microbiomes, 2022, 17, .                                              | 2.2 | 25        |
| 100 | Inclusion of local environmental conditions alters high-latitude vegetation change predictions based on bioclimatic models. Polar Biology, 2011, 34, 883-897.                               | 0.5 | 24        |
| 101 | Topographic Wetness Index as a Proxy for Soil Moisture: The Importance of Flowâ€Routing Algorithm and Grid Resolution. Water Resources Research, 2021, 57, e2021WR029871.                   | 1.7 | 24        |
| 102 | The meso-scale drivers of temperature extremes in high-latitude Fennoscandia. Climate Dynamics, 2014,<br>42, 237-252.                                                                       | 1.7 | 23        |
| 103 | Contrasting effects of biotic interactions on richness and distribution of vascular plants,<br>bryophytes and lichens in an arctic–alpine landscape. Polar Biology, 2016, 39, 649-657.      | 0.5 | 23        |
| 104 | The direct and indirect effects of watershed land use and soil type on stream water metal concentrations. Water Resources Research, 2016, 52, 7711-7725.                                    | 1.7 | 23        |
| 105 | Dwarf Shrubs Impact Tundra Soils: Drier, Colder, and Less Organic Carbon. Ecosystems, 2021, 24, 1378-1392.                                                                                  | 1.6 | 23        |
| 106 | Using unclassified continuous remote sensing data to improve distribution models of red-listed plant species. Biodiversity and Conservation, 2013, 22, 1731-1754.                           | 1.2 | 22        |
| 107 | 2.6 Statistical Methods for Geomorphic Distribution Modeling. , 2013, , 59-73.                                                                                                              |     | 21        |
| 108 | Impact of biotic interactions on biodiversity varies across a landscape. Journal of Biogeography, 2016, 43, 2412-2423.                                                                      | 1.4 | 21        |

Μιςκα Luoto

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Unravelling direct and indirect effects of hierarchical factors driving microbial stream communities.<br>Journal of Biogeography, 2017, 44, 2376-2385.                                                              | 1.4 | 21        |
| 110 | Identifying multidisciplinary research gaps across Arctic terrestrial gradients. Environmental<br>Research Letters, 2019, 14, 124061.                                                                               | 2.2 | 21        |
| 111 | Fine-grained climate velocities reveal vulnerability of protected areas to climate change. Scientific<br>Reports, 2020, 10, 1678.                                                                                   | 1.6 | 21        |
| 112 | Scale dependence of ecological assembly rules: Insights from empirical datasets and joint species distribution modelling. Journal of Ecology, 2020, 108, 1967-1977.                                                 | 1.9 | 21        |
| 113 | Relationships between aboveâ€ground plant traits and carbon cycling in tundra plant communities.<br>Journal of Ecology, 2022, 110, 700-716.                                                                         | 1.9 | 21        |
| 114 | Novel theoretical insights into geomorphic process–environment relationships using simulated response curves. Earth Surface Processes and Landforms, 2011, 36, 363-371.                                             | 1.2 | 19        |
| 115 | Relative importance of habitat area, connectivity, management and local factors for vascular plants:<br>spring ephemerals in boreal semi-natural grasslands. Biodiversity and Conservation, 2009, 18,<br>1067-1085. | 1.2 | 18        |
| 116 | Assessing spatial uncertainty in predictive geomorphological mapping: A multi-modelling approach.<br>Computers and Geosciences, 2010, 36, 355-361.                                                                  | 2.0 | 18        |
| 117 | The effects of local, buffer zone and geographical variables on lake plankton metacommunities.<br>Hydrobiologia, 2015, 743, 175-188.                                                                                | 1.0 | 15        |
| 118 | Drivers of high-latitude plant diversity hotspots and their congruence. Biological Conservation, 2017, 212, 288-299.                                                                                                | 1.9 | 15        |
| 119 | Snow is an important control of plant community functional composition in oroarctic tundra.<br>Oecologia, 2019, 191, 601-608.                                                                                       | 0.9 | 15        |
| 120 | Threat spots and environmental determinants of red-listed plant, butterfly and bird species in boreal agricultural environments. Biodiversity and Conservation, 2008, 17, 3289-3305.                                | 1.2 | 14        |
| 121 | Significant shallow–depth soil warming over Russia during the past 40Âyears. Global and Planetary<br>Change, 2021, 197, 103394.                                                                                     | 1.6 | 13        |
| 122 | Environmental Controls of InSARâ€Based Periglacial Ground Dynamics in a Subâ€Arctic Landscape. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006175.                                          | 1.0 | 12        |
| 123 | Assessing sampling coverage of species distribution in biodiversity databases. Journal of Vegetation Science, 2019, 30, 620-632.                                                                                    | 1.1 | 11        |
| 124 | Exposing wind stress as a driver of fineâ€scale variation in plant communities. Journal of Ecology, 2021, 109, 2121-2136.                                                                                           | 1.9 | 11        |
| 125 | Calibrating aquatic microfossil proxies with regression-tree ensembles: Cross-validation with modern chironomid and diatom data. Holocene, 2016, 26, 1040-1048.                                                     | 0.9 | 10        |
| 126 | Warm range margin of boreal bryophytes and lichens not directly limited by temperatures. Journal of Ecology, 2021, 109, 3724-3736.                                                                                  | 1.9 | 10        |

Miska Luoto

| #   | Article                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Microclimate temperature variations from boreal forests to the tundra. Agricultural and Forest<br>Meteorology, 2022, 323, 109037.                                                                   | 1.9 | 10        |
| 128 | Arctic-alpine vegetation biomass is driven by fine-scale abiotic heterogeneity. Geografiska Annaler,<br>Series A: Physical Geography, 2014, 96, n/a-n/a.                                            | 0.6 | 9         |
| 129 | Stream diatom assemblages as predictors of climate. Freshwater Biology, 2016, 61, 876-886.                                                                                                          | 1.2 | 9         |
| 130 | Models of Arctic-alpine refugia highlight importance of climate and local topography. Polar Biology, 2017, 40, 489-502.                                                                             | 0.5 | 9         |
| 131 | Determinants of sediment properties and organic matter in beach and dune environments based on boosted regression trees. Earth Surface Processes and Landforms, 2015, 40, 1137-1145.                | 1.2 | 8         |
| 132 | Can Topographic Variation in Climate Buffer against Climate Change-Induced Population Declines in Northern Forest Birds?. Diversity, 2020, 12, 56.                                                  | 0.7 | 8         |
| 133 | Snow information is required in subcontinental scale predictions of mountain plant distributions.<br>Global Ecology and Biogeography, 2021, 30, 1502-1513.                                          | 2.7 | 8         |
| 134 | Cryogenic land surface processes shape vegetation biomass patterns in northern European tundra.<br>Communications Earth & Environment, 2021, 2, .                                                   | 2.6 | 8         |
| 135 | The activity and functions of soil microbial communities in the Finnish sub-Arctic vary across vegetation types. FEMS Microbiology Ecology, 2022, 98, .                                             | 1.3 | 8         |
| 136 | Improving forecasts of arctic-alpine refugia persistence with landscape-scale variables. Geografiska<br>Annaler, Series A: Physical Geography, 2017, 99, 2-14.                                      | 0.6 | 7         |
| 137 | Geomorphological processes shape plant community traits in the Arctic. Global Ecology and Biogeography, 2022, 31, 1381-1398.                                                                        | 2.7 | 7         |
| 138 | Decadal Changes in Soil and Atmosphere Temperature Differences Linked With Environment Shifts<br>Over Northern Eurasia. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2020JF005865. | 1.0 | 6         |
| 139 | Competition mediates understorey species range shifts under climate change. Journal of Ecology, 2022, 110, 1813-1825.                                                                               | 1.9 | 6         |
| 140 | Spatial modelling of stream water quality along an urban–rural gradient. Geografiska Annaler, Series<br>A: Physical Geography, 2015, 97, 819-834.                                                   | 0.6 | 5         |
| 141 | Are drivers of microbial diatom distributions context dependent in humanâ€impacted and pristine environments?. Ecological Applications, 2019, 29, e01917.                                           | 1.8 | 5         |
| 142 | Modelling spatioâ€ŧemporal soil moisture dynamics in mountain tundra. Hydrological Processes, 2022,<br>36, .                                                                                        | 1.1 | 5         |
| 143 | Species differ in their responses to wind: the underexplored link between species fineâ€scale occurrences and variation in wind stress. Journal of Vegetation Science, 2021, 32, e13093.            | 1.1 | 4         |
| 144 | Influence of patch size and connectivity on beach and dune species in land-uplift coasts. Plant Ecology and Diversity, 2016, 9, 35-44.                                                              | 1.0 | 3         |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Observed Decrease in Soil and Atmosphere Temperature Coupling in Recent Decades Over Northern<br>Eurasia. Geophysical Research Letters, 2021, 48, e2021GL092500.                | 1.5 | 1         |
| 146 | A stable, genetically determined colour dimorphism in the dung beetle <i><scp>A</scp>phodius depressus</i> : patterns and mechanisms. Ecological Entomology, 2015, 40, 575-584. | 1.1 | 0         |