
David J. Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5760264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends in peptide drug discovery. Nature Reviews Drug Discovery, 2021, 20, 309-325.	21.5	792
2	Ionic Currents in Molluscan Soma. Annual Review of Neuroscience, 1980, 3, 141-167.	5.0	310
3	The Engineering of an Orally Active Conotoxin for the Treatment of Neuropathic Pain. Angewandte Chemie - International Edition, 2010, 49, 6545-6548.	7.2	280
4	Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nature Neuroscience, 2001, 4, 902-907.	7.1	233
5	Engineering stable peptide toxins by means of backbone cyclization: Stabilization of the Â-conotoxin MII. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13767-13772.	3.3	220
6	Novel ω-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes. Journal of Biological Chemistry, 2000, 275, 35335-35344.	1.6	199
7	ÂO-conotoxin MrVIB selectively blocks Nav1.8 sensory neuron specific sodium channels and chronic pain behavior without motor deficits. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17030-17035.	3.3	184
8	Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue and Cell, 1987, 19, 733-745.	1.0	174
9	α-Selenoconotoxins, a New Class of Potent α7 Neuronal Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 14136-14143.	1.6	171
10	Regulation of Neuronal Voltage-gated Sodium Channels by the Ubiquitin-Protein Ligases Nedd4 and Nedd4-2. Journal of Biological Chemistry, 2004, 279, 28930-28935.	1.6	138
11	Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Scientific Reports, 2016, 6, 23179.	1.6	133
12	Isolation, Structure, and Activity of GID, a Novel α4/7-Conotoxin with an Extended N-terminal Sequence. Journal of Biological Chemistry, 2003, 278, 3137-3144.	1.6	129
13	The Doublecortin-Expressing Population in the Developing and Adult Brain Contains Multipotential Precursors in Addition to Neuronal-Lineage Cells. Journal of Neuroscience, 2007, 27, 3734-3742.	1.7	129
14	Solving the α-Conotoxin Folding Problem: Efficient Selenium-Directed On-Resin Generation of More Potent and Stable Nicotinic Acetylcholine Receptor Antagonists. Journal of the American Chemical Society, 2010, 132, 3514-3522.	6.6	124
15	The Synthesis, Structural Characterization, and Receptor Specificity of the α-Conotoxin Vc1.1. Journal of Biological Chemistry, 2006, 281, 23254-23263.	1.6	122
16	Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells. European Journal of Neuroscience, 2004, 20, 1-13.	1.2	117
17	Acetylcholineâ€evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia Journal of Physiology, 1991, 434, 215-237.	1.3	114
18	A New Level of Conotoxin Diversity, a Non-native Disulfide Bond Connectivity in α-Conotoxin AulB Reduces Structural Definition but Increases Biological Activity. Journal of Biological Chemistry, 2002, 277, 48849-48857.	1.6	114

#	Article	IF	CITATIONS
19	Calciumâ€activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block Journal of Physiology, 1992, 455, 601-621.	1.3	111
20	The relationship of brevetoxin †length' and A-ring functionality to binding and activity in neuronal sodium channels. Chemistry and Biology, 1995, 2, 533-541.	6.2	106
21	Are α9α10 Nicotinic Acetylcholine Receptors a Pain Target for α-Conotoxins?. Molecular Pharmacology, 2007, 72, 1406-1410.	1.0	106
22	α-Conotoxin Epl, a Novel Sulfated Peptide from Conus episcopatusThat Selectively Targets Neuronal Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 1998, 273, 15667-15674.	1.6	103
23	Conotoxins and their potential pharmaceutical applications. , 1999, 46, 219-234.		97
24	Characteristics of sodium and calcium conductance changes produced by membrane depolarization in an Aplysia neurone Journal of Physiology, 1979, 289, 143-161.	1.3	93
25	Chemical Modification of Conotoxins to Improve Stability and Activity. ACS Chemical Biology, 2007, 2, 457-468.	1.6	93
26	Bradykinin and inositol 1,4,5-trisphosphate-stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflugers Archiv European Journal of Physiology, 1989, 414, 377-384.	1.3	92
27	Total Synthesis of the Analgesic Conotoxin MrVIB through Selenocysteineâ€Assisted Folding. Angewandte Chemie - International Edition, 2011, 50, 6527-6529.	7.2	88
28	Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse Journal of Physiology, 1985, 369, 145-159.	1.3	85
29	ω-Conotoxin CVID Inhibits a Pharmacologically Distinct Voltage-sensitive Calcium Channel Associated with Transmitter Release from Preganglionic Nerve Terminals. Journal of Biological Chemistry, 2003, 278, 4057-4062.	1.6	85
30	Determination of the α-Conotoxin Vc1.1 Binding Site on the α9α10 Nicotinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2013, 56, 3557-3567.	2.9	84
31	Regulation of the Voltage-gated K+ Channels KCNQ2/3 and KCNQ3/5 by Ubiquitination. Journal of Biological Chemistry, 2007, 282, 12135-12142.	1.6	82
32	lonic currents in response to membrane depolarization in an Aplysia neurone Journal of Physiology, 1979, 289, 115-141.	1.3	81
33	Structures of μO-conotoxins from Conus marmoreus. Journal of Biological Chemistry, 2004, 279, 25774-25782.	1.6	80
34	Chemical and Functional Identification and Characterization of Novel Sulfated α-Conotoxins from the Cone SnailConusanemone. Journal of Medicinal Chemistry, 2004, 47, 1234-1241.	2.9	80
35	Tertiapin-Q Blocks Recombinant and Native Large Conductance K+ Channels in a Use-Dependent Manner. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1353-1361.	1.3	80
36	Improving Efficacy, Oral Bioavailability, and Delivery of Paclitaxel Using Protein-Grafted Solid Lipid Nanoparticles. Molecular Pharmaceutics, 2016, 13, 3903-3912.	2.3	80

#	Article	IF	CITATIONS
37	Liposome reconstitution and modulation of recombinant N-methyl-D-aspartate receptor channels by membrane stretch. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1540-1545.	3.3	79
38	Scanning Mutagenesis of α-Conotoxin Vc1.1 Reveals Residues Crucial for Activity at the α9α10 Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2009, 284, 20275-20284.	1.6	78
39	A novel mechanism of inhibition of high-voltage activated calcium channels by α-conotoxins contributes to relief of nerve injury-induced neuropathic pain. Pain, 2011, 152, 259-266.	2.0	77
40	Mechanisms of conotoxin inhibition of N-type (Cav2.2) calcium channels. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1619-1628.	1.4	77
41	α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA _B receptors. Gut, 2017, 66, 1083-1094.	6.1	77
42	Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in sensory neurons of α9 nicotinic receptor knockout mice. Channels, 2010, 4, 51-54.	1.5	75
43	The α2δ Auxiliary Subunit Reduces Affinity of ω-Conotoxins for Recombinant N-type (Cav2.2) Calcium Channels. Journal of Biological Chemistry, 2004, 279, 34705-34714.	1.6	74
44	Solution Structure of μ-Conotoxin PIIIA, a Preferential Inhibitor of Persistent Tetrodotoxin-sensitive Sodium Channels. Journal of Biological Chemistry, 2002, 277, 27247-27255.	1.6	72
45	Analgesic conotoxins: block and G proteinâ€coupled receptor modulation of Nâ€type (Ca _V 2.2) calcium channels. British Journal of Pharmacology, 2012, 166, 486-500.	2.7	72
46	Are nicotinic acetylcholine receptors coupled to G proteins?. BioEssays, 2013, 35, 1025-1034.	1.2	72
47	Single Amino Acid Substitutions in α-Conotoxin PnIA Shift Selectivity for Subtypes of the Mammalian Neuronal Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1999, 274, 36559-36564.	1.6	71
48	Identification of a Novel Class of Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 24745-24755.	1.6	70
49	An ATP-sensitive potassium conductance in rabbit arterial endothelial cells Journal of Physiology, 1995, 485, 595-606.	1.3	69
50	Synthesis, Structure Elucidation, in Vitro Biological Activity, Toxicity, and Caco-2 Cell Permeability of Lipophilic Analogues of α-Conotoxin MII. Journal of Medicinal Chemistry, 2003, 46, 1266-1272.	2.9	69
51	α-Conotoxin AulB Isomers Exhibit Distinct Inhibitory Mechanisms and Differential Sensitivity to Stoichiometry of α3β4 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2010, 285, 22254-22263.	1.6	69
52	ZNF265—a novel spliceosomal protein able to induce alternative splicing. Journal of Cell Biology, 2001, 154, 25-32.	2.3	64
53	Dicarba α-Conotoxin Vc1.1 Analogues with Differential Selectivity for Nicotinic Acetylcholine and GABA _B Receptors. ACS Chemical Biology, 2013, 8, 1815-1821.	1.6	64
54	lsolation and Structure-Activity of μ-Conotoxin TIIIA, A Potent Inhibitor of Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels. Molecular Pharmacology, 2007, 71, 676-685.	1.0	63

#	Article	IF	CITATIONS
55	Kir and Kv channels regulate electrical properties and proliferation of adult neural precursor cells. Molecular and Cellular Neurosciences, 2008, 37, 284-297.	1.0	61
56	Inhibition of the Norepinephrine Transporter by the Venom Peptide χ-MrIA. Journal of Biological Chemistry, 2003, 278, 40317-40323.	1.6	60
57	Effects of Cyclization on Stability, Structure, and Activity of α-Conotoxin RgIA at the α9α10 Nicotinic Acetylcholine Receptor and GABABReceptor. Journal of Medicinal Chemistry, 2011, 54, 6984-6992.	2.9	59
58	Analgesic ω-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels. Molecular Pharmacology, 2010, 77, 139-148.	1.0	57
59	Resting membrane potential and potassium currents in cultured parasympathetic neurones from rat intracardiac ganglia Journal of Physiology, 1992, 456, 405-424.	1.3	56
60	α-Conotoxins PnIA and [A10L]PnIA Stabilize Different States of the α7-L247T Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2003, 278, 26908-26914.	1.6	56
61	Functional maturation of isolated neural progenitor cells from the adult rat hippocampus. European Journal of Neuroscience, 2004, 19, 2410-2420.	1.2	56
62	NEDD4-2as a potential candidate susceptibility gene for epileptic photosensitivity. Genes, Brain and Behavior, 2007, 6, 750-755.	1.1	56
63	Dicarba Analogues of α-Conotoxin RgIA. Structure, Stability, and Activity at Potential Pain Targets. Journal of Medicinal Chemistry, 2014, 57, 9933-9944.	2.9	56
64	Allosteric α1-Adrenoreceptor Antagonism by the Conopeptide ϕTIA. Journal of Biological Chemistry, 2003, 278, 34451-34457.	1.6	54
65	Intrathecal α-conotoxins Vc1.1, AuIB and MII acting on distinct nicotinic receptor subtypes reverse signs of neuropathic pain. Neuropharmacology, 2012, 62, 2202-2207.	2.0	54
66	Isolation, characterization and total regioselective synthesis of the novel μO-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochemical Pharmacology, 2012, 84, 540-548.	2.0	54
67	Structure–Activity Studies of Cysteineâ€Rich α onotoxins that Inhibit Highâ€Voltageâ€Activated Calcium Channels via GABA _B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie - International Edition, 2016, 55, 4692-4696.	7.2	54
68	Conotoxin modulation of voltage-gated sodium channels. International Journal of Biochemistry and Cell Biology, 2008, 40, 2363-2368.	1.2	52
69	Conotoxins Targeting Neuronal Voltage-Gated Sodium Channel Subtypes: Potential Analgesics?. Toxins, 2012, 4, 1236-1260.	1.5	52
70	Isolation and characterization of α-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology, 2013, 86, 791-799.	2.0	51
71	Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1511-1520.	1.7	51
72	Ionic channels in vascular endothelial cells. Trends in Cardiovascular Medicine, 1994, 4, 18-26.	2.3	50

#	Article	IF	CITATIONS
73	Chemical Engineering and Structural and Pharmacological Characterization of the α-Scorpion Toxin OD1. ACS Chemical Biology, 2013, 8, 1215-1222.	1.6	50
74	Monovalent and divalent cation permeability and block of neuronal nicotinic receptor channels in rat parasympathetic ganglia Journal of General Physiology, 1995, 105, 701-723.	0.9	49
75	Neuronal voltage-gated sodium channel subtypes: Key roles in inflammatory and neuropathic pain. International Journal of Biochemistry and Cell Biology, 2006, 38, 2005-2010.	1.2	49
76	γ-Aminobutyric Acid Type B (CABAB) Receptor Expression Is Needed for Inhibition of N-type (Cav2.2) Calcium Channels by Analgesic α-Conotoxins. Journal of Biological Chemistry, 2012, 287, 23948-23957.	1.6	49
77	RegIIA: An α4/7-conotoxin from the venom of Conus regius that potently blocks α3β4 nAChRs. Biochemical Pharmacology, 2012, 83, 419-426.	2.0	49
78	VIP and PACAP potentiation of nicotinic ACh-evoked currents in rat parasympathetic neurons is mediated by G-protein activation. European Journal of Neuroscience, 2000, 12, 2243-2251.	1.2	46
79	Potassium Channels and Membrane Potential in the Modulation of Intracellular Calcium in Vascular Endothelial Cells. Journal of Cardiovascular Electrophysiology, 2004, 15, 598-610.	0.8	46
80	Structure of α-conotoxin BuIA: influences of disulfide connectivity on structural dynamics. BMC Structural Biology, 2007, 7, 28.	2.3	46
81	Calcium permeability and modulation of nicotinic acetylcholine receptor-channels in rat parasympathetic neurons. Journal of Physiology (Paris), 1992, 86, 67-76.	2.1	45
82	Ciguatoxin (CTX-1) modulates single tetrodotoxin-sensitive sodium channels in rat parasympathetic neurones. Neuroscience Letters, 1998, 252, 103-106.	1.0	45
83	WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo. Experimental Cell Research, 2006, 312, 3379-3388.	1.2	45
84	Cyclic RGDfK Peptide Functionalized Polymeric Nanocarriers for Targeting Gemcitabine to Ovarian Cancer Cells. Molecular Pharmaceutics, 2016, 13, 1491-1500.	2.3	44
85	Neuronally Selective μ-Conotoxins from Conus striatus Utilize an α-Helical Motif to Target Mammalian Sodium Channels. Journal of Biological Chemistry, 2008, 283, 21621-21628.	1.6	43
86	Stabilization of α-Conotoxin AulB: Influences of Disulfide Connectivity and Backbone Cyclization. Antioxidants and Redox Signaling, 2011, 14, 87-95.	2.5	43
87	Structure and Activity of α-Conotoxin PelA at Nicotinic Acetylcholine Receptor Subtypes and GABAB Receptor-coupled N-type Calcium Channels. Journal of Biological Chemistry, 2011, 286, 10233-10237.	1.6	43
88	Identifying Key Amino Acid Residues That Affect α-Conotoxin AuIB Inhibition of α3β4 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 34428-34442.	1.6	43
89	Purinergic receptor activation inhibits mitogen-stimulated proliferation in primary neurospheres from the adult mouse subventricular zone. Molecular and Cellular Neurosciences, 2007, 35, 535-548.	1.0	42
90	Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon, 2009, 54, 56-61.	0.8	42

#	Article	IF	CITATIONS
91	Less is More: Design of a Highly Stable Disulfide-Deleted Mutant of Analgesic Cyclic α-Conotoxin Vc1.1. Scientific Reports, 2015, 5, 13264.	1.6	42
92	Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and α-conotoxin Vc1.1 via GABAB receptor activation. Journal of General Physiology, 2014, 143, 465-479.	0.9	41
93	Novel Mechanism of Voltage-Gated N-type (Cav2.2) Calcium Channel Inhibition Revealed through α-Conotoxin Vc1.1 Activation of the GABAB Receptor. Molecular Pharmacology, 2015, 87, 240-250.	1.0	40
94	Divalent ion currents and the delayed potassium conductance in an Aplysia neurone Journal of Physiology, 1980, 304, 297-313.	1.3	39
95	lonic selectivity of native ATP-activated (P2X) receptor channels in dissociated neurones from rat parasympathetic ganglia. Journal of Physiology, 2001, 534, 423-435.	1.3	39
96	Voltageâ€dependent sodium and calcium currents in cultured parasympathetic neurones from rat intracardiac ganglia Journal of Physiology, 1992, 456, 425-441.	1.3	38
97	Inhibition of Neuronal Nicotinic Acetylcholine Receptor Subtypes by α-Conotoxin GID and Analogues*. Journal of Biological Chemistry, 2009, 284, 4944-4951.	1.6	38
98	Alanine Scan of α-Conotoxin RegIIA Reveals a Selective α3β4 Nicotinic Acetylcholine Receptor Antagonist. Journal of Biological Chemistry, 2015, 290, 1039-1048.	1.6	38
99	Physiological roles of ion channels in adult neural stem cells and their progeny. Journal of Neurochemistry, 2010, 114, 946-959.	2.1	37
100	Ciguatoxin-induced oscillations in membrane potential and action potential firing in rat parasympathetic neurons. European Journal of Neuroscience, 2002, 16, 242-248.	1.2	36
101	Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons. British Journal of Pharmacology, 2005, 144, 98-107.	2.7	36
102	Regulation of voltage-gated ion channels in excitable cells by the ubiquitin ligases Nedd4 and Nedd4-2. Channels, 2011, 5, 79-88.	1.5	36
103	Cyclic analogues of αâ€conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. British Journal of Pharmacology, 2018, 175, 2384-2398.	2.7	36
104	N-acetyl-d-glucosamine-conjugated PAMAM dendrimers as dual receptor-targeting nanocarriers for anticancer drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 377-386.	2.0	36
105	Overexpressed Cavβ3 Inhibits N-type (Cav2.2) Calcium Channel Currents through a Hyperpolarizing Shift of "Ultra-slow―and "Closed-state―Inactivation. Journal of General Physiology, 2004, 123, 401-416.	0.9	35
106	Purification of Immature Neuronal Cells from Neural Stem Cell Progeny. PLoS ONE, 2011, 6, e20941.	1.1	35
107	Local anaesthetic blockade of neuronal nicotinic ACh receptorâ€channels in rat parasympathetic ganglion cells. British Journal of Pharmacology, 1994, 111, 663-672.	2.7	34
108	Selective Modulation of Neuronal Nicotinic Acetylcholine Receptor Channel Subunits by Go-Protein Subunits. Journal of Neuroscience, 2005, 25, 3571-3577.	1.7	34

#	Article	IF	CITATIONS
109	Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine, 2015, 10, 2847-2859.	1.7	33
110	Sodium and calcium gating currents in an Aplysia neurone Journal of Physiology, 1979, 291, 467-481.	1.3	32
111	Muscarinic and Nicotinic ACh Receptor Activation Differentially Mobilize Ca2+ in Rat Intracardiac Ganglion Neurons. Journal of Neurophysiology, 2003, 90, 1956-1964.	0.9	32
112	α-Conotoxin Dendrimers Have Enhanced Potency and Selectivity for Homomeric Nicotinic Acetylcholine Receptors. Journal of the American Chemical Society, 2015, 137, 3209-3212.	6.6	32
113	M ₄ Muscarinic Receptor Activation Modulates Calcium Channel Currents in Rat Intracardiac Neurons. Journal of Neurophysiology, 1997, 78, 1903-1912.	0.9	31
114	The threeâ€dimensional structure of the analgesic α onotoxin, RgIA. FEBS Letters, 2008, 582, 597-602.	1.3	31
115	Embryonic Toxin Expression in the Cone Snail Conus victoriae. Journal of Biological Chemistry, 2011, 286, 22546-22557.	1.6	31
116	Conotoxin αD-GeXXA utilizes a novel strategy to antagonize nicotinic acetylcholine receptors. Scientific Reports, 2015, 5, 14261.	1.6	31
117	Biomedical Applications of Trastuzumab: As a Therapeutic Agent and a Targeting Ligand. Medicinal Research Reviews, 2015, 35, 849-876.	5.0	31
118	Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation. Frontiers in Molecular Neuroscience, 2016, 9, 111.	1.4	31
119	Voltage sensitivity of inhibitory postsynaptic currents inAplysia buccal ganglia. Brain Research, 1976, 115, 506-511.	1.1	30
120	Molecular Engineering of Conotoxins: The Importance of Loop Size to α-Conotoxin Structure and Function. Journal of Medicinal Chemistry, 2008, 51, 5575-5584.	2.9	30
121	Analgesic conopeptides targeting G protein-coupled receptors reduce excitability of sensory neurons. Neuropharmacology, 2017, 127, 116-123.	2.0	30
122	Ethanol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction. Nature, 1977, 266, 739-741.	13.7	29
123	Contribution of membrane receptor signalling to chronic visceral pain. International Journal of Biochemistry and Cell Biology, 2018, 98, 10-23.	1.2	29
124	TEA inhibits ACh-induced EDRF release: endothelial Ca(2+)-dependent K+ channels contribute to vascular tone. American Journal of Physiology - Heart and Circulatory Physiology, 1994, 267, H1135-H1141.	1.5	28
125	Adenosine Triphosphate Acts as Both a Competitive Antagonist and a Positive Allosteric Modulator at Recombinant N-Methyl-D-aspartate Receptors. Molecular Pharmacology, 2004, 65, 1386-1396.	1.0	28
126	Structure–Activity Studies Reveal the Molecular Basis for GABA _B -Receptor Mediated Inhibition of High Voltage-Activated Calcium Channels by α-Conotoxin Vc1.1. ACS Chemical Biology, 2018, 13, 1577-1587.	1.6	28

#	Article	IF	CITATIONS
127	?-Conotoxin CVIB differentially inhibits native and recombinant N- and P/Q-type calcium channels. European Journal of Neuroscience, 2007, 25, 435-444.	1.2	27
128	Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. , 2021, 222, 107792.		27
129	ï‰-Conotoxin inhibition of excitatory synaptic transmission evoked by dorsal root stimulation in rat superficial dorsal horn. Neuropharmacology, 2008, 55, 860-864.	2.0	26
130	Regulation of the voltage-gated K ⁺ channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1. American Journal of Physiology - Cell Physiology, 2008, 295, C73-C80.	2.1	26
131	Molecular Determinants Conferring the Stoichiometric-Dependent Activity of α-Conotoxins at the Human α9α10 Nicotinic Acetylcholine Receptor Subtype. Journal of Medicinal Chemistry, 2018, 61, 4628-4634.	2.9	26
132	Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons. Pflugers Archiv European Journal of Physiology, 2001, 441, 629-638.	1.3	25
133	Bombesin receptors as potential targets for anticancer drug delivery and imaging. International Journal of Biochemistry and Cell Biology, 2019, 114, 105567.	1.2	25
134	Pre- and postsynaptic actions of ATP on neurotransmission in rat submandibular ganglia. Neuroscience, 2001, 107, 283-291.	1.1	24
135	A novel α-conopeptide Eu1.6 inhibits N-type (CaV2.2) calcium channels and exhibits potent analgesic activity. Scientific Reports, 2018, 8, 1004.	1.6	24
136	Caffeineâ€evoked, calciumâ€sensitive membrane currents in rabbit aortic endothelial cells. British Journal of Pharmacology, 1995, 115, 133-141.	2.7	23
137	P2Y purinoceptor activation mobilizes intracellular Ca 2+ and induces a membrane current in rat intracardiac neurones. Journal of Physiology, 2000, 526, 287-298.	1.3	23
138	An environmentally sustainable biomimetic production of cyclic disulfide-rich peptides. Green Chemistry, 2020, 22, 5002-5016.	4.6	23
139	Novel analgesic ω-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports, 2018, 8, 13397.	1.6	22
140	Funnel web spider venom produces spontaneous action potentials in nerve. Life Sciences, 1977, 20, 243-249.	2.0	21
141	Developmental Changes in Hyperpolarization-Activated CurrentsI h and I K(IR) in Isolated Rat Intracardiac Neurons. Journal of Neurophysiology, 2001, 86, 312-320.	0.9	21
142	Reactive oxygen species modulate neuronal excitability in rat intrinsic cardiac ganglia. Autonomic Neuroscience: Basic and Clinical, 2009, 150, 45-52.	1.4	21
143	A Distinct Functional Site in Ω-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom. ACS Chemical Biology, 2015, 10, 2805-2815.	1.6	21
144	Hydrophobic residues at position 10 of α-conotoxin PnIA influence subtype selectivity between α7 and α3β2 neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 2014, 91, 534-542.	2.0	20

#	Article	IF	CITATIONS
145	Interaction of Synthetic Human SLURP-1 with the Nicotinic Acetylcholine Receptors. Scientific Reports, 2017, 7, 16606.	1.6	20
146	α onotoxins active at α3â€containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. British Journal of Pharmacology, 2018, 175, 1855-1868.	2.7	20
147	Distinct activities of novel neurotoxins from Australian venomous snakes for nicotinic acetylcholine receptors. Cellular and Molecular Life Sciences, 2007, 64, 2829-2840.	2.4	19
148	Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type CaV channels. Biochemical Pharmacology, 2014, 89, 276-286.	2.0	19
149	Molecular Basis for Differential Sensitivity of <i>α</i> -Conotoxin RegIIA at Rat and Human Neuronal Nicotinic Acetylcholine Receptors. Molecular Pharmacology, 2015, 88, 993-1001.	1.0	19
150	Key Structural Determinants in the Agonist Binding Loops of Human β2 and β4 Nicotinic Acetylcholine Receptor Subunits Contribute to α3I²4 Subtype Selectivity of α-Conotoxins. Journal of Biological Chemistry, 2016, 291, 23779-23792.	1.6	19
151	Targeting of N-Type Calcium Channels via GABA _B -Receptor Activation by α-Conotoxin Vc1.1 Variants Displaying Improved Analgesic Activity. Journal of Medicinal Chemistry, 2018, 61, 10198-10205.	2.9	19
152	Dimerization of α-Conotoxins as a Strategy to Enhance the Inhibition of the Human α7 and α9α10 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2020, 63, 2974-2985.	2.9	18
153	Is the A-ring lactone of brevetoxin PbTX-3 required for sodium channel orphan receptor binding and activity?. Natural Toxins, 1994, 2, 212-221.	1.0	17
154	NMDA receptor subunit-dependent modulation by conantokin-G and Ala(7)-conantokin-G. Journal of Neurochemistry, 2006, 96, 283-291.	2.1	17
155	Localization of Na _v 1.7 in the normal and injured rodent olfactory system indicates a critical role in olfaction, pheromone sensing and immune function. Channels, 2012, 6, 103-110.	1.5	17
156	Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits. Molecular Pharmacology, 2016, 89, 187-196.	1.0	17
157	Analgesic transient receptor potential vanilloidâ€1â€active compounds inhibit native and recombinant Tâ€type calcium channels. British Journal of Pharmacology, 2019, 176, 2264-2278.	2.7	17
158	Coordinate regulation of stretch-activated channels and myogenic tone by polycystins 1 and 2. Channels, 2010, 4, 1-2.	1.5	16
159	Modulation of human Na _v 1.7 channel gating by synthetic α-scorpion toxin OD1 and its analogs. Channels, 2016, 10, 139-147.	1.5	16
160	The tarantula toxin \hat{l}^2/\hat{l} -TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Scientific Reports, 2017, 7, 974.	1.6	16
161	Identification of a Novel O-Conotoxin Reveals an Unusual and Potent Inhibitor of the Human α9α10 Nicotinic Acetylcholine Receptor. Marine Drugs, 2017, 15, 170.	2.2	16
162	(<i>E</i>)-3-Furan-2-yl- <i>N</i> - <i>p</i> -tolyl-acrylamide and its Derivative DM489 Decrease Neuropathic Pain in Mice Predominantly by α7 Nicotinic Acetylcholine Receptor Potentiation. ACS Chemical Neuroscience, 2020, 11, 3603-3614.	1.7	16

#	Article	IF	CITATIONS
163	Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons. Frontiers in Cellular Neuroscience, 2020, 14, 600895.	1.8	16
164	Biophysical properties of Na _v 1.8/Na _v 1.2 chimeras and inhibition by µO onotoxin MrVIB. British Journal of Pharmacology, 2012, 166, 2148-2160.	2.7	15
165	K _v 3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation. Journal of Physiology, 2013, 591, 2579-2591.	1.3	15
166	Backbone cyclization of analgesic conotoxin GeXIVA facilitates direct folding of the ribbon isomer. Journal of Biological Chemistry, 2017, 292, 17101-17112.	1.6	15
167	α-Conotoxin Vc1.1 Structure–Activity Relationship at the Human α9α10 Nicotinic Acetylcholine Receptor Investigated by Minimal Side Chain Replacement. ACS Chemical Neuroscience, 2019, 10, 4328-4336.	1.7	15
168	Calcium channels controlling acetylcholine release from preganglionic nerve terminals in rat autonomic ganglia. Neuroscience, 1999, 95, 1121-1127.	1.1	14
169	Basal Nonselective Cation Permeability in Rat Cardiac Microvascular Endothelial Cells. Microvascular Research, 2002, 64, 187-197.	1.1	14
170	Stoichiometry dependent inhibition of rat α3β4 nicotinic acetylcholine receptor by the ribbon isomer of α-conotoxin AulB. Biochemical Pharmacology, 2018, 155, 288-297.	2.0	14
171	Coronaridine congeners decrease neuropathic pain in mice and inhibit α9α10 nicotinic acetylcholine receptors and CaV2.2 channels. Neuropharmacology, 2020, 175, 108194.	2.0	14
172	An ATPâ€sensitive K + conductance in dissociated neurones from adult rat intracardiac ganglia. Journal of Physiology, 2001, 534, 713-720.	1.3	13
173	Transforming conotoxins into cyclotides: Backbone cyclization of Pâ€superfamily conotoxins. Biopolymers, 2015, 104, 682-692.	1.2	13
174	Inhibition of human N―and Tâ€type calcium channels by an <i>ortho</i> â€phenoxyanilide derivative, MONIROâ€1. British Journal of Pharmacology, 2018, 175, 2284-2295.	2.7	13
175	Role of Cysl–CyslllDisulfide Bond on the Structure and Activity of α-Conotoxins at Human Neuronal Nicotinic Acetylcholine Receptors. ACS Omega, 2017, 2, 4621-4631.	1.6	12
176	Structural basis of the potency and selectivity of Urotoxin, a potent Kv1 blocker from scorpion venom. Biochemical Pharmacology, 2020, 174, 113782.	2.0	12
177	Fulditoxin, representing a new class of dimeric snake toxins, defines novel pharmacology at nicotinic ACh receptors. British Journal of Pharmacology, 2020, 177, 1822-1840.	2.7	12
178	Rational Design of α-Conotoxin RegIIA Analogues Selectively Inhibiting the Human α3β2 Nicotinic Acetylcholine Receptor through Computational Scanning. ACS Chemical Neuroscience, 2020, 11, 2804-2811.	1.7	12
179	InÂvivo and inÂvitro testing of native α-conotoxins from the injected venom of Conus purpurascens. Neuropharmacology, 2017, 127, 253-259.	2.0	11
180	A Novel Lid-Covering Peptide Inhibitor of Nicotinic Acetylcholine Receptors Derived from αD-Conotoxin GeXXA. Marine Drugs, 2017, 15, 164.	2.2	11

#	Article	IF	CITATIONS
181	Molecular dynamics simulations of dihydroâ€Î²â€erythroidine bound to the human α4β2 nicotinic acetylcholine receptor. British Journal of Pharmacology, 2019, 176, 2750-2763.	2.7	11
182	Cytosolic [Ca2+] measurements in endothelium of rabbit cardiac valves using imaging fluorescence microscopy. American Journal of Physiology - Heart and Circulatory Physiology, 1994, 266, H2130-H2135.	1.5	10
183	Effects of linker sequence modifications on the structure, stability, and biological activity of a cyclic αâ€conotoxin. Biopolymers, 2016, 106, 864-875.	1.2	10
184	Peptide grafted and self-assembled poly(γ-glutamic acid)-phenylalanine nanoparticles targeting camptothecin to glioma. Nanomedicine, 2017, 12, 1661-1674.	1.7	10
185	Drysdalin, an antagonist of nicotinic acetylcholine receptors highlights the importance of functional rather than structural conservation of amino acid residues. FASEB BioAdvances, 2019, 1, 115-131.	1.3	10
186	Met-enkephalin-induced mobilization of intracellular Ca2+ in rat intracardiac ganglion neurones. Neuroscience Letters, 1999, 264, 105-108.	1.0	9
187	68Ga–Prostate-Specific Membrane Antigen Uptake in Cerebral Tuberculosis. Clinical Nuclear Medicine, 2020, 45, 238-240.	0.7	9
188	Alkyne-Bridged α-Conotoxin Vc1.1 Potently Reverses Mechanical Allodynia in Neuropathic Pain Models. Journal of Medicinal Chemistry, 2021, 64, 3222-3233.	2.9	9
189	Globular and ribbon isomers of Conus geographus α-conotoxins antagonize human nicotinic acetylcholine receptors. Biochemical Pharmacology, 2021, 190, 114638.	2.0	9
190	Developmental changes in expression of GABAAreceptor-channels in rat intrinsic cardiac ganglion neurones. Journal of Physiology, 2005, 564, 465-474.	1.3	8
191	Inhibition of cholinergic pathways in <i>Drosophila melanogaster</i> by α onotoxins. FASEB Journal, 2015, 29, 1011-1018.	0.2	8
192	Formulation and dosage of therapeutic nanosuspension for active targeting of docetaxel (WO) Tj ETQq0 0 0 rgBT	/Qyerlock 2.4	2 10 Tf 50 3
193	Neural control of the heart: developmental changes in ionic conductances in mammalian intrinsic cardiac neurons. Autonomic Neuroscience: Basic and Clinical, 2002, 98, 75-78.	1.4	7
194	Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine. British Journal of Pharmacology, 2005, 144, 323-330.	2.7	7
195	Neuropharmacology of venom peptides. Neuropharmacology, 2017, 127, 1-3.	2.0	7
196	Monoclonal Antibody-Conjugated Dendritic Nanostructures for siRNA Delivery. Methods in Molecular Biology, 2019, 1974, 195-201.	0.4	7
197	α onotoxin Bt1.8 from <i>Conus betulinus</i> selectively inhibits α6/α3β2β3 and α3β2 nicotinic acetylcholi receptor subtypes. Journal of Neurochemistry, 2021, 159, 90-100.	ine 2.1	7
109	Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon	9.9	7

¹⁹⁸ spider. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .

3.3 7

#	Article	IF	CITATIONS
199	Effects of arginine 10 to lysine substitution on ï‰â€conotoxin <scp>CVIE</scp> and <scp>CVIF</scp> block of <scp>Ca_v</scp> 2.2 channels. British Journal of Pharmacology, 2014, 171, 3313-3327.	2.7	6
200	Analgesic αâ€conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA _B receptors and reduce neuroexcitability. British Journal of Pharmacology, 2022, 179, 179-198.	2.7	6
201	É'O onotoxin GeXIVA isomers modulate Nâ€ŧype calcium (Ca _V 2.2) channels and inwardlyâ€rectifying potassium (GIRK) channels via GABA _B receptor activation. Journal of Neurochemistry, 2022, 160, 154-171.	2.1	6
202	Mutations within the selectivity filter of the NMDA receptor-channel influence voltage dependent block by 5-hydroxytryptamine. British Journal of Pharmacology, 2006, 149, 163-169.	2.7	5
203	NMR Structure of μ-Conotoxin GIIIC: Leucine 18 Induces Local Repacking of the N-Terminus Resulting in Reduced NaV Channel Potency. Molecules, 2018, 23, 2715.	1.7	5
204	Spider Venom Peptide Pn3a Inhibition of Primary Afferent High Voltage-Activated Calcium Channels. Frontiers in Pharmacology, 2020, 11, 633679.	1.6	5
205	Mechanism of direct Cav2.2 channel block by the κ-opioid receptor agonist U50488H. Neuropharmacology, 2016, 109, 49-58.	2.0	4
206	Ketamine inhibits synaptic transmission and nicotinic acetylcholine receptor-mediated responses in rat intracardiac ganglia in situ. Neuropharmacology, 2020, 165, 107932.	2.0	4
207	Interactions of the α3β2 Nicotinic Acetylcholine Receptor Interfaces with α-Conotoxin LsIA and its Carboxylated C-terminus Analogue: Molecular Dynamics Simulations. Marine Drugs, 2020, 18, 349.	2.2	4
208	A method for high-content functional imaging of intracellular calcium responses in gelatin-immobilized non-adherent cells. Experimental Cell Research, 2020, 395, 112210.	1.2	4
209	Functional modulation of the human voltage-gated sodium channel Na _V 1.8 by auxiliary β subunits. Channels, 2021, 15, 79-93.	1.5	4
210	ACh- and caffeine-induced Ca ²⁺ mobilization and current activation in rabbit arterial endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1748-H1758.	1.5	3
211	Electrical properties and synaptic transmission in mouse intracardiac ganglion neurons <i>in situ</i> . Physiological Reports, 2021, 9, e15056.	0.7	3
212	CHAPTER 4. Venoms-Based Drug Discovery: Bioassays, Electrophysiology, High-Throughput Screens andÂTarget Identification. RSC Drug Discovery Series, 2015, , 97-128.	0.2	2
213	On-Resin Strategy to Label α-Conotoxins: Cy5-RgIA, a Potent α9α10 Nicotinic Acetylcholine Receptor Imaging Probe. Australian Journal of Chemistry, 2020, 73, 327.	0.5	2
214	Asymmetrical displacement currents. Nature, 1978, 271, 586-587.	13.7	1
215	Correction to "Analgesic ï‰-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels†TABLE 1. Molecular Pharmacology, 2011, 80, 356-356.	1.0	1
216	Cyclic-RGDfK-Directed Docetaxel Loaded Nanomicelles for Angiogenic Tumor Targeting. Methods in Pharmacology and Toxicology, 2015, , 157-168.	0.1	1

#	Article	IF	CITATIONS
217	Cysteine-Rich α-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1245-1250.	1.7	1
218	Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons. British Journal of Pharmacology, 2005, 144, 144-144.	2.7	0
219	Inhibition of Human CaV2.3 Channels via μ-, Î′- and κ-Opioid Receptor Activation. Biophysical Journal, 2015, 108, 578a.	0.2	0
220	Backbone cyclization of analgesic conotoxin gexiva facilitates direct folding of the ribbon isomer. Toxicon, 2019, 158, S42.	0.8	0
221	Structures, functions of two novel α-conotoxins from conus snails in South China Sea. Toxicon, 2019, 158, S26-S27.	0.8	0
222	AB0074â€INTERRELATIONSHIP BETWEEN NICOTINIC ACETYLCHOLINE RECEPTOR AND CYTOKINE PRODUCTIC NOTED FOLLOWING T-CELL ANTIGEN RECOGNITION AND ACTIVATION. , 2019, , .	DN	0