
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5759409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1693-1706.	1.8	286
2	Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology, 2009, 10, 97-108.	2.0	253
3	Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Frontiers in Bioscience - Landmark, 2009, Volume, 376.	3.0	129
4	Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1144-1153.	1.8	127
5	The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: It's time for reconciliation. Neurobiology of Disease, 2014, 62, 144-159.	2.1	109
6	In vivo protective effect of ferulic acid against noise-induced hearing loss in the guinea-pig. Neuroscience, 2010, 169, 1575-1588.	1.1	108
7	Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radical Biology and Medicine, 2012, 52, 2292-2301.	1.3	108
8	Association between frontal cortex oxidative damage and beta-amyloid as a function of age in Down syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 130-138.	1.8	103
9	Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radical Biology and Medicine, 2016, 91, 127-142.	1.3	98
10	The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics. Antioxidants and Redox Signaling, 2017, 26, 364-387.	2.5	97
11	Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids and Surfaces B: Biointerfaces, 2013, 109, 273-279.	2.5	93
12	The Heme Oxygenase/Biliverdin Reductase Pathway in Drug Research and Development. Current Drug Metabolism, 2009, 10, 579-594.	0.7	92
13	It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	88
14	Strategy to reduce free radical species in Alzheimer's disease: an update of selected antioxidants. Expert Review of Neurotherapeutics, 2015, 15, 19-40.	1.4	87
15	Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: A novel mechanism of action. Pharmacological Research, 2011, 63, 172-180.	3.1	86
16	Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. Journal of Proteomics, 2011, 74, 1091-1103.	1.2	86
17	Oxidative and Nitrosative Modifications of Biliverdin Reductase-A in the Brain of Subjects with Alzheimer's Disease and Amnestic Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2011, 25, 623-633.	1.2	85
18	Biliverdin reductase-A protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 480-487.	1.8	77

#	Article	IF	CITATIONS
19	Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. Translational Neurodegeneration, 2018, 7, 28.	3.6	76
20	Statins more than cholesterol lowering agents in Alzheimer disease: Their pleiotropic functions as potential therapeutic targets. Biochemical Pharmacology, 2014, 88, 605-616.	2.0	73
21	Aberrant protein phosphorylation in Alzheimer disease brain disturbs pro-survival and cell death pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1871-1882.	1.8	73
22	Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neuroscience Letters, 2012, 518, 101-105.	1.0	72
23	Natural substances and Alzheimer's disease: From preclinical studies to evidence based medicine. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 616-624.	1.8	72
24	Biliverdin Reductase-A Mediates the Beneficial Effects of Intranasal Insulin in Alzheimer Disease. Molecular Neurobiology, 2019, 56, 2922-2943.	1.9	70
25	Cholesterol-independent neuroprotective and neurotoxic activities of statins: Perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacological Research, 2011, 64, 180-186.	3.1	67
26	Curcumin in clinical practice: myth or reality?. Trends in Pharmacological Sciences, 2009, 30, 333-334.	4.0	64
27	Atorvastatin treatment in a dog preclinical model of Alzheimer's disease leads to up-regulation of haem oxygenase-1 and is associated with reduced oxidative stress in brain. International Journal of Neuropsychopharmacology, 2012, 15, 981-987.	1.0	63
28	Biliverdin reductaseâ€A: a novel drug target for atorvastatin in a dog preâ€clinical model of Alzheimer disease. Journal of Neurochemistry, 2012, 120, 135-146.	2.1	63
29	mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radical Biology and Medicine, 2021, 169, 382-396.	1.3	58
30	Loss of biliverdin reductase-A favors Tau hyper-phosphorylation in Alzheimer's disease. Neurobiology of Disease, 2019, 125, 176-189.	2.1	55
31	Brain insulin resistance triggers early onset Alzheimer disease in Down syndrome. Neurobiology of Disease, 2020, 137, 104772.	2.1	54
32	Bach1 Overexpression in Down Syndrome Correlates with the Alteration of the HO-1/BVR-A System: Insights for Transition to Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 44, 1107-1120.	1.2	53
33	The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radical Biology and Medicine, 2021, 176, 16-33.	1.3	53
34	Characterization of the Sâ€denitrosylating activity of bilirubin. Journal of Cellular and Molecular Medicine, 2009, 13, 2365-2375.	1.6	51
35	Inactivation of brain Cofilin-1 by age, Alzheimer's disease and Î ³ -secretase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2500-2509.	1.8	50
36	Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3181-3194.	1.8	49

#	Article	IF	CITATIONS
37	Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Frontiers in Neuroscience, 2020, 14, 670.	1.4	48
38	Valorization of Tomato Waste as a Source of Carotenoids. Molecules, 2021, 26, 5062.	1.7	47
39	Restoration of aberrant mTOR signaling by intranasal rapamycin reduces oxidative damage: Focus on HNE-modified proteins in a mouse model of down syndrome. Redox Biology, 2019, 23, 101162.	3.9	46
40	Pharmacologists and Alzheimer disease therapy: to boldly go where no scientist has gone before. Expert Opinion on Investigational Drugs, 2011, 20, 1243-1261.	1.9	44
41	HO-1/BVR-A System Analysis in Plasma from Probable Alzheimer's Disease and Mild Cognitive Impairment Subjects: A Potential Biochemical Marker for the Prediction of the Disease. Journal of Alzheimer's Disease, 2012, 32, 277-289.	1.2	43
42	Redox Proteomics Analyses of the Influence of Co-Expression of Wild-Type or Mutated LRRK2 and Tau on C. elegans Protein Expression and Oxidative Modification: Relevance to Parkinson Disease. Antioxidants and Redox Signaling, 2012, 17, 1490-1506.	2.5	43
43	The protective role of carotenoids against 7-keto-cholesterol formation in solution. Molecular and Cellular Biochemistry, 2008, 309, 61-68.	1.4	41
44	HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology. Free Radical Biology and Medicine, 2017, 111, 262-269.	1.3	41
45	Characterization of the S-denitrosylating activity of bilirubin. Journal of Cellular and Molecular Medicine, 2009, 13, 2365-2375.	1.6	41
46	Polyubiquitinylation Profile in Down Syndrome Brain Before and After the Development of Alzheimer Neuropathology. Antioxidants and Redox Signaling, 2017, 26, 280-298.	2.5	38
47	Disturbance of redox homeostasis in Down Syndrome: Role of iron dysmetabolism. Free Radical Biology and Medicine, 2018, 114, 84-93.	1.3	38
48	Curcumin and Alzheimer Disease: This Marriage Is Not to Be Performed. Journal of Biological Chemistry, 2011, 286, le3.	1.6	37
49	Activation of p53 in Down Syndrome and in the Ts65Dn Mouse Brain is Associated with a Pro-Apoptotic Phenotype. Journal of Alzheimer's Disease, 2016, 52, 359-371.	1.2	35
50	Increased Mammalian Target of Rapamycin Signaling Contributes to the Accumulation of Protein Oxidative Damage in a Mouse Model of Down's Syndrome. Neurodegenerative Diseases, 2016, 16, 62-68.	0.8	35
51	Lack of p53 Decreases Basal Oxidative Stress Levels in the Brain Through Upregulation of Thioredoxin-1, Biliverdin Reductase-A, Manganese Superoxide Dismutase, and Nuclear Factor Kappa-B. Antioxidants and Redox Signaling, 2012, 16, 1407-1420.	2.5	30
52	Sex differences in brain proteomes of neuronâ€specific STAT3â€null mice after cerebral ischemia/reperfusion. Journal of Neurochemistry, 2012, 121, 680-692.	2.1	29
53	Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer's disease pathology. Expert Review of Neurotherapeutics, 2017, 17, 59-75.	1.4	29
54	Poly-ubiquitin profile in Alzheimer disease brain. Neurobiology of Disease, 2018, 118, 129-141.	2.1	29

#	Article	IF	CITATIONS
55	Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3309-3321.	1.8	29
56	Reduced biliverdin reductase-A levels are associated with early alterations of insulin signaling in obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1490-1501.	1.8	29
57	Circulating dipeptidyl peptidase-4 is independently associated with the presence and severity of NAFLD/NASH in individuals with and without obesity and metabolic disease. Journal of Endocrinological Investigation, 2021, 44, 979-988.	1.8	28
58	Insulin resistance in Alzheimer disease: Is heme oxygenase-1 an Achille's heel?. Neurobiology of Disease, 2015, 84, 69-77.	2.1	26
59	Insulin resistance, oxidative stress and mitochondrial defects in Ts65dn mice brain: A harmful synergistic path in down syndrome. Free Radical Biology and Medicine, 2021, 165, 152-170.	1.3	26
60	Synthesis, Characterization, and Anti-Inflammatory Activity of Diclofenac-Bound Cotton Fibers. Biomacromolecules, 2010, 11, 1716-1720.	2.6	23
61	Heme Oxygenase-1 in Central Nervous System Malignancies. Journal of Clinical Medicine, 2020, 9, 1562.	1.0	23
62	The BACH1/Nrf2 Axis in Brain in Down Syndrome and Transition to Alzheimer Disease-Like Neuropathology and Dementia. Antioxidants, 2020, 9, 779.	2.2	21
63	Chronic PERK induction promotes Alzheimer-like neuropathology in Down syndrome: Insights for therapeutic intervention. Progress in Neurobiology, 2021, 196, 101892.	2.8	21
64	Protein nitration profile of CD3+ lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection. Free Radical Biology and Medicine, 2018, 129, 430-439.	1.3	20
65	Early and Selective Activation and Subsequent Alterations to the Unfolded Protein Response in Down Syndrome Mouse Models. Journal of Alzheimer's Disease, 2018, 62, 347-359.	1.2	19
66	Greater circulating DPP4 activity is associated with impaired flow-mediated dilatation in adults with type 2 diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29, 1087-1094.	1.1	19
67	Basal brain oxidative and nitrative stress levels are finely regulated by the interplay between superoxide dismutase 2 and p53. Journal of Neuroscience Research, 2015, 93, 1728-1739.	1.3	18
68	BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain—Implications for Neurodegeneration. Antioxidants, 2020, 9, 671.	2.2	17
69	High-Fat Diet Leads to Reduced Protein O-GlcNAcylation and Mitochondrial Defects Promoting the Development of Alzheimer's Disease Signatures. International Journal of Molecular Sciences, 2021, 22, 3746.	1.8	17
70	Aberrant crosstalk between insulin signaling and mTOR in young Down syndrome individuals revealed by neuronalâ€derived extracellular vesicles. Alzheimer's and Dementia, 2022, 18, 1498-1510.	0.4	16
71	Heme oxygenase-derived carbon monoxide modulates gonadotropin-releasing hormone release in immortalized hypothalamic neurons. Neuroscience Letters, 2010, 471, 175-178.	1.0	15
72	Coenzyme Q10 and cognition in atorvastatin treated dogs. Neuroscience Letters, 2011, 501, 92-95.	1.0	15

#	Article	IF	CITATIONS
73	Experimental Research on Nitric Oxide and the Therapy of Alzheimer Disease: A Challenging Bridge. CNS and Neurological Disorders - Drug Targets, 2011, 10, 766-776.	0.8	15
74	Lack of p53 Affects the Expression of Several Brain Mitochondrial Proteins: Insights from Proteomics into Important Pathways Regulated by p53. PLoS ONE, 2012, 7, e49846.	1.1	14
75	Editorial (Thematic Issue: Oxidative Stress and Alzheimer Disease: Where Do We Stand?). Current Alzheimer Research, 2016, 13, 108-111.	0.7	13
76	Reduced Biliverdin Reductase-A Expression in Visceral Adipose Tissue is Associated with Adipocyte Dysfunction and NAFLD in Human Obesity. International Journal of Molecular Sciences, 2020, 21, 9091.	1.8	13
77	The Dysregulation of OGT/OGA Cycle Mediates Tau and APP Neuropathology in Down Syndrome. Neurotherapeutics, 2021, 18, 340-363.	2.1	12
78	Biliverdin Reductase-A correlates with inducible nitric oxide synthasein in atorvastatin treated aged canine brain. Neural Regeneration Research, 2013, 8, 1925-37.	1.6	11
79	Therapeutic use of tea derivatives: all that glitters is not gold. Blood, 2009, 114, 2359-2360.	0.6	10
80	CAPE and its synthetic derivative VP961 restore BACH1/NRF2 axis in Down Syndrome. Free Radical Biology and Medicine, 2022, 183, 1-13.	1.3	9
81	Biliverdin reductase-A protein levels are reduced in type 2 diabetes and are associated with poor glycometabolic control. Life Sciences, 2021, 284, 119913.	2.0	8
82	Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. Molecular Syndromology, 2021, 12, 202-218.	0.3	6
83	Proteomics Study of Peripheral Blood Mononuclear Cells in Down Syndrome Children. Antioxidants, 2020, 9, 1112.	2.2	5
84	Aberrant protein networks in Alzheimer disease. Nature Reviews Neurology, 2022, 18, 255-256.	4.9	5
85	Editorial: Brain Insulin Resistance in Neurodevelopmental and Neurodegenerative Disorders: Mind the Gap!. Frontiers in Neuroscience, 2021, 15, 730378.	1.4	4
86	Brain insulin resistance: an early risk factor for Alzheimer's disease development in Down syndrome. Neural Regeneration Research, 2022, 17, 333.	1.6	4
87	Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Science Signaling, 2022, 15, eabh3066.	1.6	4
88	Role of Biliverdin Reductase A in the Regulation of Insulin Signaling in Metabolic and Neurodegenerative Diseases: An Update. International Journal of Molecular Sciences, 2022, 23, 5574.	1.8	4
89	Heme oxygenase expression and activity in immortalized hypothalamic neurons GT1–7. Neuroscience Letters, 2008, 444, 106-108.	1.0	2
90	Biliverdin reductase-A: A novel drug target for atorvastatin in a dog preclinical model of Alzheimer's disease. Free Radical Biology and Medicine, 2012, 53, S61.	1.3	0

#	Article	IF	CITATIONS
91	Biliverdin Reductase-A Inactivation Promotes Insulin Resistance in Alzheimer Disease: A New Paradigm. Free Radical Biology and Medicine, 2015, 87, S30.	1.3	0
92	Improvement of BVR-A Activity Ameliorates Brain Insulin Resistance in Alzheimer Disease Following Intranasal Insulin Administration. Free Radical Biology and Medicine, 2016, 100, S157-S158.	1.3	0
93	[P3–160]: ABERRANT POLYUBIQUITOME PROFILE IN DOWN SYNDROME AND ALZHEIMER DISEASE BRAIN. Alzheimer's and Dementia, 2017, 13, P995.	0.4	0
94	[P4–032]: BILIVERDIN REDUCTASEâ€A MEDIATES THE BENEFICIAL EFFECTS OF INTRANASAL INSULIN ADMINISTRATION ON AD PATHOLOGY IN THE BRAIN OF 3XTGâ€AD MICE. Alzheimer's and Dementia, 2017, 13, P1267.	0.4	0
95	Loss of biliverdin reductaseâ€a (BVRâ€A) impairs beneficial effects of CNS insulin on brain energy metabolism favoring the development of Alzheimer's disease (AD) neuropathology. Alzheimer's and Dementia, 2020, 16, e039511.	0.4	0
96	Potential Therapeutic Effects of Statins in Alzheimer's Disease. , 2014, , 2339-2354.		0