List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5759063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 2015, 77, 773-798.	6.2	538
2	Influence of particle size on lipid digestion and \hat{l}^2 -carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry, 2013, 141, 1472-1480.	8.2	489
3	Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 2015, 47, 168-177.	10.7	471
4	New advances in extending the shelf-life of fresh-cut fruits: a review. Trends in Food Science and Technology, 2003, 14, 341-353.	15.1	418
5	Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry, 2001, 74, 309-315.	8.2	417
6	Edible coatings to incorporate active ingredients to fresh-cut fruits: a review. Trends in Food Science and Technology, 2009, 20, 438-447.	15.1	351
7	Apple puree-alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh-cut apples. Postharvest Biology and Technology, 2007, 45, 254-264.	6.0	332
8	Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biology and Technology, 2010, 57, 139-148.	6.0	317
9	Impact of High Pressure and Pulsed Electric Fields on Bioactive Compounds and Antioxidant Activity of Orange Juice in Comparison with Traditional Thermal Processing. Journal of Agricultural and Food Chemistry, 2005, 53, 4403-4409.	5.2	315
10	Physicochemical characterization and antimicrobial activity of food-grade emulsions and nanoemulsions incorporating essential oils. Food Hydrocolloids, 2015, 43, 547-556.	10.7	299
11	Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of Food Engineering, 2007, 81, 634-641.	5.2	283
12	Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 2015, 105, 8-16.	6.0	282
13	Pulsed Light Treatments for Food Preservation. A Review. Food and Bioprocess Technology, 2010, 3, 13.	4.7	269
14	Comparative Contents of Dietary Fiber, Total Phenolics, and Minerals in Persimmons and Apples. Journal of Agricultural and Food Chemistry, 2001, 49, 952-957.	5.2	262
15	Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. International Journal of Food Microbiology, 2008, 121, 313-327.	4.7	259
16	Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends in Food Science and Technology, 2009, 20, 544-556.	15.1	254
17	Control of Pathogenic and Spoilage Microorganisms in Freshâ€cut Fruits and Fruit Juices by Traditional and Alternative Natural Antimicrobials. Comprehensive Reviews in Food Science and Food Safety, 2009, 8, 157-180.	11.7	240
18	Use of nisin and other bacteriocins for preservation of dairy products. International Dairy Journal, 2008, 18, 329-343.	3.0	228

#	Article	IF	CITATIONS
19	Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT - Food Science and Technology, 2008, 41, 139-147.	5.2	228
20	Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biology and Technology, 2008, 50, 87-94.	6.0	218
21	Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. Journal of Food Engineering, 2007, 83, 41-46.	5.2	208
22	Edible Nanoemulsions as Carriers of Active Ingredients: A Review. Annual Review of Food Science and Technology, 2017, 8, 439-466.	9.9	207
23	Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 2007, 21, 118-127.	10.7	203
24	Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 2531-2548.	10.3	203
25	Non-thermal food preservation: Pulsed electric fields. Trends in Food Science and Technology, 1997, 8, 151-157.	15.1	198
26	Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 2013, 139, 878-884.	8.2	197
27	Mechanical, Barrier, and Antimicrobial Properties of Apple Puree Edible Films Containing Plant Essential Oils. Journal of Agricultural and Food Chemistry, 2006, 54, 9262-9267.	5.2	192
28	Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 2015, 14, 33-43.	3.4	191
29	Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids, 2008, 22, 1493-1503.	10.7	185
30	Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chemistry, 2013, 136, 206-212.	8.2	183
31	Alginate- and Gellan-Based Edible Films for Probiotic Coatings on Fresh-Cut Fruits. Journal of Food Science, 2007, 72, E190-E196.	3.1	182
32	Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids, 2013, 30, 401-407.	10.7	180
33	Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms (Agaricus bisporus). Postharvest Biology and Technology, 2010, 56, 216-222.	6.0	179
34	Carotenoid and phenolic profile of tomato juices processed by high intensity pulsed electric fields compared with conventional thermal treatments. Food Chemistry, 2009, 112, 258-266.	8.2	177
35	INACTIVATION OF ESCHERICHIA COLI IN SKIM MILK BY HIGH INTENSITY PULSED ELECTRIC FIELDS. Journal of Food Process Engineering, 1997, 20, 317-336.	2.9	171
36	Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chemistry, 2007, 102, 201-209.	8.2	171

#	Article	IF	CITATIONS
37	Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chemistry, 2007, 105, 1151-1158.	8.2	167
38	Influence of alginate-based edible coating as carrier of antibrowning agents onÂbioactive compounds and antioxidant activity in fresh-cut Kent mangoes. LWT - Food Science and Technology, 2013, 50, 240-246.	5.2	166
39	Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils. Food Hydrocolloids, 2016, 52, 438-446.	10.7	166
40	Characterisation of low-fat high-dietary fibre frankfurters. Meat Science, 1999, 52, 247-256.	5.5	164
41	Characterization of dietary fiber from orange juice extraction. Food Research International, 1998, 31, 355-361.	6.2	158
42	Changes in Vitamin C, Phenolic, and Carotenoid Profiles Throughout in Vitro Gastrointestinal Digestion of a Blended Fruit Juice. Journal of Agricultural and Food Chemistry, 2013, 61, 1859-1867.	5.2	156
43	Using polysaccharide-based edible coatings to enhance quality and antioxidant properties of fresh-cut melon. LWT - Food Science and Technology, 2008, 41, 1862-1870.	5.2	155
44	Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. European Food Research and Technology, 2006, 223, 487-493.	3.3	154
45	Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chemistry, 2009, 115, 1312-1319.	8.2	154
46	Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control, 2017, 76, 1-12.	5.5	154
47	Milk processing by high intensity pulsed electric fields. Trends in Food Science and Technology, 2002, 13, 195-204.	15.1	153
48	Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 60, 359-368.	1.6	153
49	Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. European Food Research and Technology, 2008, 228, 239-248.	3.3	152
50	The use of packaging techniques to maintain freshness in freshâ€cut fruits and vegetables: a review. International Journal of Food Science and Technology, 2009, 44, 875-889.	2.7	152
51	Antimicrobial Activity of Essential Oils on Salmonella Enteritidis, Escherichia coli, and Listeria innocua in Fruit Juices. Journal of Food Protection, 2006, 69, 1579-1586.	1.7	150
52	Characterisation of peach dietary fibre concentrate as a food ingredient. Food Chemistry, 1999, 65, 175-181.	8.2	147
53	Apple and Pear Peel and Pulp and Their Influence on Plasma Lipids and Antioxidant Potentials in Rats Fed Cholesterol-Containing Diets. Journal of Agricultural and Food Chemistry, 2003, 51, 5780-5785.	5.2	146
54	Impact of microfluidization or ultrasound processing on the antimicrobial activity against Escherichia coli of lemongrass oil-loaded nanoemulsions. Food Control, 2014, 37, 292-297.	5.5	138

#	Article	IF	CITATIONS
55	Effect of packaging conditions on quality and shelf-life of fresh-cut pineapple (Ananas comosus). Postharvest Biology and Technology, 2008, 50, 182-189.	6.0	137
56	Comparative content of some bioactive compounds in apples, peaches and pears and their influence on lipids and antioxidant capacity in rats. Journal of Nutritional Biochemistry, 2002, 13, 603-610.	4.2	136
57	Browning Inhibition in Freshâ€cutâ€~Fuji'Apple Slices by Natural Antibrowning Agents. Journal of Food Science, 2006, 71, S59.	3.1	136
58	Comparative study on shelf life of orange juice processed by high intensity pulsed electric fields or heat treatment. European Food Research and Technology, 2006, 222, 321-329.	3.3	132
59	Comparison of the contents of the main biochemical compounds and the antioxidant activity of some Spanish olive oils as determined by four different radical scavenging tests. Journal of Nutritional Biochemistry, 2003, 14, 154-159.	4.2	131
60	Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 2008, 9, 272-279.	5.6	130
61	Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT - Food Science and Technology, 2011, 44, 834-839.	5.2	127
62	INACTIVATION OF ESCHERICHIA COLI SUSPENDED IN LIQUID EGG USING PULSED ELECTRIC FIELDS. Journal of Food Processing and Preservation, 1997, 21, 193-208.	2.0	123
63	Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal of the Science of Food and Agriculture, 2006, 86, 71-81.	3.5	121
64	Curcumin-loaded nanoemulsions stability as affected by the nature and concentration of surfactant. Food Chemistry, 2018, 266, 466-474.	8.2	121
65	Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon. Journal of Nutritional Biochemistry, 1999, 10, 367-371.	4.2	118
66	Browning Evaluation of Ready-to-Eat Apples as Affected by Modified Atmosphere Packaging. Journal of Agricultural and Food Chemistry, 2001, 49, 3685-3690.	5.2	117
67	Combination of high-intensity pulsed electric fields with natural antimicrobials to inactivate pathogenic microorganisms and extend the shelf-life of melon and watermelon juices. Food Microbiology, 2008, 25, 479-491.	4.2	116
68	Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiology, 2005, 22, 311-319.	4.2	115
69	Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Science and Emerging Technologies, 2008, 9, 328-340.	5.6	113
70	Effects of Ripeness Stages on the Storage Atmosphere, Color, and Textural Properties of Minimally Processed Apple Slices. Journal of Food Science, 2002, 67, 1958-1963.	3.1	111
71	Effects of thermal and non-thermal processing treatments on fatty acids and free amino acids of grape juice. Food Control, 2007, 18, 473-479.	5.5	111
72	Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut â€~Kent' mango (Mangifera indica L.). Postharvest Biology and Technology, 2009, 51, 384-390.	6.0	109

#	Article	IF	CITATIONS
73	Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice–soymilk beverage in chilled storage. LWT - Food Science and Technology, 2010, 43, 872-881.	5.2	106
74	Recent developments in the use of modified atmosphere packaging for freshcut fruits and vegetables. Stewart Postharvest Review, 2009, 5, 1-11.	0.7	105
75	Novel technologies to improve food safety and quality. Current Opinion in Food Science, 2019, 30, 1-7.	8.0	104
76	Effects of Pulsed Electric Fields on Pathogenic Microorganisms of Major Concern in Fluid Foods: A Review. Critical Reviews in Food Science and Nutrition, 2008, 48, 747-759.	10.3	103
77	Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields. International Journal of Food Microbiology, 2007, 117, 192-200.	4.7	101
78	Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials, 2016, 6, 17.	4.1	101
79	Effect of minimal processing on bioactive compounds and color attributes of fresh-cut tomatoes. LWT - Food Science and Technology, 2008, 41, 217-226.	5.2	100
80	Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157:H7 in apple, pear and melon juices. Food Control, 2009, 20, 105-112.	5.5	99
81	Comparative Study on Essential Oils Incorporated into an Alginate-Based Edible Coating To Assure the Safety and Quality of Fresh-Cut Fuji Apples. Journal of Food Protection, 2008, 71, 1150-1161.	1.7	98
82	Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice–soymilk beverages during refrigerated storage. Food Chemistry, 2011, 129, 982-990.	8.2	98
83	Antimicrobial activity of nanoemulsions containing essential oils and high methoxyl pectin during long-term storage. Food Control, 2017, 77, 131-138.	5.5	98
84	Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends in Food Science and Technology, 2013, 29, 98-107.	15.1	97
85	In vitro bioaccessibility of health-related compounds as affected by the formulation of fruit juice- and milk-based beverages. Food Research International, 2014, 62, 771-778.	6.2	94
86	Inactivation of Peach Polyphenoloxidase by Exposure to Pulsed Electric Fields. Journal of Food Science, 2002, 67, 1467-1472.	3.1	92
87	Enhancing Inactivation of Staphylococcus aureus in Skim Milk by Combining High-Intensity Pulsed Electric Fields and Nisin. Journal of Food Protection, 2006, 69, 345-353.	1.7	92
88	Inactivation of plant pectin methylesterase by thermal or high intensity pulsed electric field treatments. Innovative Food Science and Emerging Technologies, 2006, 7, 40-48.	5.6	91
89	Impact of high-intensity pulsed electric fields variables on vitamin C, anthocyanins and antioxidant capacity of strawberry juice. LWT - Food Science and Technology, 2009, 42, 93-100.	5.2	90
90	Intrinsic tryptophan fluorescence of human serum proteins and related conformational changes. The Protein Journal, 2000, 19, 637-642.	1.1	87

#	Article	IF	CITATIONS
91	Optimising the inactivation of grape juice spoilage organisms by pulse electric fields. International Journal of Food Microbiology, 2009, 130, 159-165.	4.7	86
92	Metabolomics for assessing safety and quality of plant-derived food. Food Research International, 2013, 54, 1172-1183.	6.2	86
93	INACTIVATION OF ESCHERICHIA COLI AND BACILLUS SUBTILIS SUSPENDED IN PEA SOUP USING PULSED ELECTRIC FIELDS. Journal of Food Processing and Preservation, 1996, 20, 501-510.	2.0	85
94	Proteins and amino acids in beers, their contents and relationships with other analytical data. Food Chemistry, 1999, 67, 71-78.	8.2	84
95	Effect of Natural Antibrowning Agents on Color and Related Enzymes in Fresh ut Fuji Apples as an Alternative to the Use of Ascorbic Acid. Journal of Food Science, 2008, 73, S267-72.	3.1	84
96	Physicochemical Characterization of Lemongrass Essential Oil–Alginate Nanoemulsions: Effect of Ultrasound Processing Parameters. Food and Bioprocess Technology, 2013, 6, 2439-2446.	4.7	81
97	Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments. Food Chemistry, 2013, 136, 199-205.	8.2	81
98	Microbial and Enzymatic Changes in Fruit Juice Induced by High-Intensity Pulsed Electric Fields. Food Reviews International, 2003, 19, 253-273.	8.4	80
99	Influence of fruit dietary fibre addition on physical and sensorial properties of strawberry jams. Journal of Food Engineering, 1999, 41, 13-21.	5.2	79
100	Development of high-fruit-dietary-fibre muffins. European Food Research and Technology, 1999, 210, 123-128.	3.3	79
101	Changes in quality attributes throughout storage of strawberry juice processed by high-intensity pulsed electric fields or heat treatments. LWT - Food Science and Technology, 2009, 42, 813-818.	5.2	79
102	Microbiological and biochemical stability of fresh-cut apples preserved by modified atmosphere packaging. Innovative Food Science and Emerging Technologies, 2004, 5, 215-224.	5.6	78
103	Optimization and validation of PEF processing conditions to inactivate oxidative enzymes of grape juice. Journal of Food Engineering, 2007, 83, 452-462.	5.2	78
104	Inactivation of Oxidative Enzymes by High-Intensity Pulsed Electric Field for Retention of Color in Carrot Juice. Food and Bioprocess Technology, 2008, 1, 364-373.	4.7	76
105	Influence of Storage Temperature on the Kinetics of the Changes in Anthocyanins, Vitamin C, and Antioxidant Capacity in Freshâ€Cut Strawberries Stored under Highâ€Oxygen Atmospheres. Journal of Food Science, 2009, 74, C184-91.	3.1	76
106	Avoiding non-enzymatic browning by high-intensity pulsed electric fields in strawberry, tomato and watermelon juices. Journal of Food Engineering, 2009, 92, 37-43.	5.2	76
107	Microbiological shelf life and sensory evaluation of fruit juices treated by high-intensity pulsed electric fields and antimicrobials. Food and Bioproducts Processing, 2012, 90, 205-214.	3.6	76
108	Effects of polysaccharide-based edible coatings enriched with dietary fiber on quality attributes of fresh-cut apples. Journal of Food Science and Technology, 2015, 52, 7795-7805.	2.8	76

#	Article	IF	CITATIONS
109	The role of pulsed light spectral distribution in the inactivation of Escherichia coli and Listeria innocua on fresh-cut mushrooms. Food Control, 2012, 24, 206-213.	5.5	75
110	Identification and Differences of Total Proteins and Their Soluble Fractions in Some Pseudocereals Based on Electrophoretic Patterns. Journal of Agricultural and Food Chemistry, 2003, 51, 7798-7804.	5.2	74
111	Quality Index, Consumer Acceptability, Bioactive Compounds, and Antioxidant Activity of Freshâ€Cut "Ataulfo―Mangoes (<i>Mangifera Indica</i> L.) as Affected by Lowâ€Temperature Storage. Journal of Food Science, 2009, 74, S126-34.	3.1	74
112	Effects of Pulsed Electric Fields on the Bioactive Compound Content and Antioxidant Capacity of Tomato Fruit. Journal of Agricultural and Food Chemistry, 2012, 60, 3126-3134.	5.2	74
113	Inhibition of Browning on Fresh-cut Pear Wedges by Natural Compounds. Journal of Food Science, 2006, 71, S216-S224.	3.1	73
114	Bio-preservation of fresh-cut tomatoes using natural antimicrobials. European Food Research and Technology, 2008, 226, 1047-1055.	3.3	73
115	Changes in the Polyphenol Profile of Tomato Juices Processed by Pulsed Electric Fields. Journal of Agricultural and Food Chemistry, 2012, 60, 9667-9672.	5.2	73
116	Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages. Food and Function, 2016, 7, 380-389.	4.6	73
117	Comparative content of some phytochemicals in Spanish apples, peaches and pears. Journal of the Science of Food and Agriculture, 2002, 82, 1166-1170.	3.5	72
118	Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innovative Food Science and Emerging Technologies, 2015, 29, 70-77.	5.6	72
119	Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields. Journal of Food Engineering, 2007, 78, 184-193.	5.2	71
120	Nanoemulsions as edible coatings. Current Opinion in Food Science, 2017, 15, 43-49.	8.0	69
121	Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 2001, 7, 425-431.	2.2	68
122	Lycopene, Vitamin C, and Antioxidant Capacity of Tomato Juice as Affected by High-Intensity Pulsed Electric Fields Critical Parameters. Journal of Agricultural and Food Chemistry, 2007, 55, 9036-9042.	5.2	68
123	Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chemistry, 2013, 141, 3131-3138.	8.2	68
124	Surface decontamination of spinach by intense pulsed light treatments: Impact on quality attributes. Postharvest Biology and Technology, 2016, 121, 118-125.	6.0	68
125	Inactivation of Saccharomyces cerevisiae Suspended in Orange Juice Using High-Intensity Pulsed Electric Fields. Journal of Food Protection, 2004, 67, 2596-2602.	1.7	67
126	Nanostructured emulsions and nanolaminates for delivery of active ingredients: Improving food safety and functionality. Trends in Food Science and Technology, 2017, 60, 12-22.	15.1	67

#	Article	IF	CITATIONS
127	Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrasonics Sonochemistry, 2020, 63, 104954.	8.2	67
128	Effects of High Intensity Pulsed Electric Field and Thermal Treatments on a Lipase from Pseudomonas fluorescens. Journal of Dairy Science, 2002, 85, 19-27.	3.4	66
129	Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat. European Food Research and Technology, 2008, 227, 599-606.	3.3	66
130	Color and viscosity of watermelon juice treated by high-intensity pulsed electric fields or heat. Innovative Food Science and Emerging Technologies, 2010, 11, 299-305.	5.6	65
131	Effect of pulsed light treatments on quality and antioxidant properties of fresh-cut strawberries. Food Chemistry, 2018, 264, 393-400.	8.2	65
132	Drying of persimmons (Diospyros kaki L.) and the following changes in the studied bioactive compounds and the total radical scavenging activities. LWT - Food Science and Technology, 2006, 39, 748-755.	5.2	64
133	Combined effect of pulsed light, edible coating and malic acid dipping to improve fresh-cut mango safety and quality. Food Control, 2016, 66, 190-197.	5.5	64
134	Pulsed electric fields–processed orange juice consumption increases plasma vitamin C and decreases F2-isoprostanes in healthy humans. Journal of Nutritional Biochemistry, 2004, 15, 601-607.	4.2	62
135	Formation, stability and antioxidant activity of food-grade multilayer emulsions containing resveratrol. Food Hydrocolloids, 2017, 71, 207-215.	10.7	62
136	Comparative Study on Shelf Life of Whole Milk Processed by High-Intensity Pulsed Electric Field or Heat Treatment. Journal of Dairy Science, 2006, 89, 905-911.	3.4	61
137	Effect of High Hydrostatic Pressure on the Content of Phytochemical Compounds and Antioxidant Activity of Prickly Pears (Opuntia ficus-indica) Beverages. Food Engineering Reviews, 2015, 7, 198-208.	5.9	61
138	The role of peroxidase on the antioxidant potential of fresh-cut â€~Piel de Sapo' melon packaged under different modified atmospheres. Food Chemistry, 2008, 106, 1085-1092.	8.2	60
139	Effect of storage conditions on the volatile composition of wines obtained from must stabilized by PEF during ageing without SO2. Innovative Food Science and Emerging Technologies, 2008, 9, 469-476.	5.6	60
140	Preservation of fresh-cut apple quality attributes by pulsed light in combination with gellan gum-based prebiotic edible coatings. LWT - Food Science and Technology, 2015, 64, 1130-1137.	5.2	60
141	Inactivation of tomato juice peroxidase by high-intensity pulsed electric fields as affected by process conditions. Food Chemistry, 2008, 107, 949-955.	8.2	59
142	Effect of minimal processing on the textural and structural properties of fresh-cut pears. Journal of the Science of Food and Agriculture, 2002, 82, 1682-1688.	3.5	58
143	Kinetics of polyphenol oxidase activity inhibition and browning of avocado purée preserved by combined methods. Journal of Food Engineering, 2002, 55, 131-137.	5.2	58
144	Enhancing the carotenoid content of tomato fruit with pulsed electric field treatments: Effects on respiratory activity and quality attributes. Postharvest Biology and Technology, 2018, 137, 113-118.	6.0	58

#	Article	IF	CITATIONS
145	Browning, polyphenol oxidase activity and headspace gas composition during storage of minimally processed pears using modified atmosphere packaging. Journal of the Science of Food and Agriculture, 2002, 82, 1490-1496.	3.5	57
146	Quality Changes in Fresh-Cut Fuji Apple as Affected by Ripeness Stage, Antibrowning Agents, and Storage Atmosphere. Journal of Food Science, 2007, 72, S036-S043.	3.1	57
147	Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. International Journal of Food Microbiology, 2008, 128, 244-249.	4.7	57
148	Nanoemulsion-Based Delivery Systems to Improve Functionality of Lipophilic Components. Frontiers in Nutrition, 2014, 1, 24.	3.7	57
149	Effect of sodium alginate incorporation procedure on the physicochemical properties of nanoemulsions. Food Hydrocolloids, 2017, 70, 191-200.	10.7	57
150	Design and Characterization of Corn Starch Edible Films Including Beeswax and Natural Antimicrobials. Food and Bioprocess Technology, 2017, 10, 103-114.	4.7	57
151	Reduction of Protease Activity in Milk by Continuous Flow High-Intensity Pulsed Electric Field Treatments. Journal of Dairy Science, 2003, 86, 697-703.	3.4	55
152	Modeling changes in health-related compounds of tomato juice treated by high-intensity pulsed electric fields. Journal of Food Engineering, 2008, 89, 210-216.	5.2	55
153	In vitro bioaccessibility of health-related compounds from a blended fruit juice–soymilk beverage: Influence of the food matrix. Journal of Functional Foods, 2014, 7, 161-169.	3.4	55
154	Influence of high-intensity pulsed electric field processing on lipoxygenase and β-glucosidase activities in strawberry juice. Innovative Food Science and Emerging Technologies, 2008, 9, 455-462.	5.6	54
155	Changes in bioactive composition of fresh-cut strawberries stored under superatmospheric oxygen, low-oxygen or passive atmospheres. Journal of Food Composition and Analysis, 2010, 23, 37-43.	3.9	54
156	Combination of Pulsed Electric Fields with Other Preservation Techniques. Food and Bioprocess Technology, 2011, 4, 954-968.	4.7	54
157	Influence of spectral distribution on bacterial inactivation and quality changes of fresh-cut watermelon treated with intense light pulses. Postharvest Biology and Technology, 2012, 69, 32-39.	6.0	54
158	Effect of superatmospheric and low oxygen modified atmospheres on shelf-life extension of fresh-cut melon. Food Control, 2008, 19, 191-199.	5.5	53
159	Effects of probiotics on the content and bioaccessibility of phenolic compounds in red pitaya pulp. Food Research International, 2019, 126, 108681.	6.2	53
160	Shelf-life extension of fresh-cut "Fuji―apples at different ripeness stages using natural substances. Postharvest Biology and Technology, 2007, 45, 265-275.	6.0	51
161	Effect of ripeness on the shelf-life of fresh-cut melon preserved by modified atmosphere packaging. European Food Research and Technology, 2007, 225, 301-311.	3.3	51
162	Comparative study on antioxidant properties of carrot juice stabilised by highâ€intensity pulsed electric fields or heat treatments. Journal of the Science of Food and Agriculture, 2009, 89, 2636-2642.	3.5	51

#	Article	IF	CITATIONS
163	Flavour retention and related enzyme activities during storage of strawberry juices processed by high-intensity pulsed electric fields or heat. Food Chemistry, 2009, 116, 59-65.	8.2	51
164	Influence of Maturity at Processing on Quality Attributes of Freshâ€cut Conference Pears. Journal of Food Science, 2004, 69, 290-294.	3.1	50
165	A Comparison of the Effects of Pulsed Electric Field and Thermal Treatments on Grape Juice. Food and Bioprocess Technology, 2013, 6, 978-987.	4.7	50
166	Encapsulation and stability of a phenolic-rich extract from mango peel within water-in-oil-in-water emulsions. Journal of Functional Foods, 2019, 56, 65-73.	3.4	50
167	Bioactive compounds and antioxidant potential in fresh and dried Jaffa® sweeties, a new kind of citrus fruit. Journal of the Science of Food and Agriculture, 2004, 84, 1459-1463.	3.5	49
168	Reduction of pectinesterase activity in a commercial enzyme preparation by pulsed electric fields: comparison of inactivation kinetic models. Journal of the Science of Food and Agriculture, 2005, 85, 1613-1621.	3.5	49
169	Use of Weibull distribution for describing kinetics of antioxidant potential changes in fresh-cut watermelon. Journal of Food Engineering, 2009, 95, 99-105.	5.2	49
170	Stability of health-related compounds in plant foods through the application of non thermal processes. Trends in Food Science and Technology, 2012, 23, 111-123.	15.1	49
171	Combined effects of malic acid dip and pulsed light treatments on the inactivation of Listeria innocua and Escherichia coli on fresh-cut produce. Food Control, 2015, 52, 112-118.	5.5	49
172	Influence of whole and fresh-cut mango intake on plasma lipids and antioxidant capacity of healthy adults. Food Research International, 2011, 44, 1386-1391.	6.2	47
173	Inactivation of <i>Salmonella enterica</i> Ser. Enteritidis in Tomato Juice by Combining of Highâ€Intensity Pulsed Electric Fields with Natural Antimicrobials. Journal of Food Science, 2008, 73, M47-53.	3.1	46
174	Influence of essential oils and pectin on nanoemulsion formulation: AÂternary phase experimental approach. Food Hydrocolloids, 2018, 81, 209-219.	10.7	46
175	Olive Oils Improve Lipid Metabolism and Increase Antioxidant Potential in Rats Fed Diets Containing Cholesterol. Journal of Agricultural and Food Chemistry, 2002, 50, 6102-6108.	5.2	45
176	Reduction of Protease Activity in Simulated Milk Ultrafiltrate by Continuous Flow High Intensity Pulsed Electric Field Treatments. Journal of Food Science, 2003, 68, 952-957.	3.1	45
177	Microbial and enzymatic stability of fruit juice-milk beverages treated by high intensity pulsed electric fields or heat during refrigerated storage. Food Control, 2011, 22, 1639-1646.	5.5	45
178	Rheology of peach dietary fibre suspensions. Journal of Food Engineering, 1999, 39, 91-99.	5.2	44
179	Fresh Israeli Jaffa Blond (Shamouti) Orange and Israeli Jaffa Red Star Ruby (Sunrise) Grapefruit Juices Affect Plasma Lipid Metabolism and Antioxidant Capacity in Rats Fed Added Cholesterol. Journal of Agricultural and Food Chemistry, 2004, 52, 4853-4859.	5.2	44
180	Enhancing the Lethal Effect of High-Intensity Pulsed Electric Field in Milk by Antimicrobial Compounds as Combined Hurdles. Journal of Dairy Science, 2008, 91, 1759-1768.	3.4	44

#	Article	IF	CITATIONS
181	Bacterial inactivation and quality changes in fresh-cut avocado treated with intense light pulses. European Food Research and Technology, 2011, 233, 395-402.	3.3	44
182	Pulsed electric fields affect endogenous enzyme activities, respiration and biosynthesis of phenolic compounds in carrots. Postharvest Biology and Technology, 2020, 168, 111284.	6.0	44
183	Influence of processing parameters on the pulsed-light inactivation ofÂPenicillium expansum in apple juice. Food Control, 2014, 41, 27-31.	5.5	43
184	USE OF MALIC ACID AND OTHER QUALITY STABILIZING COMPOUNDS TO ASSURE THE SAFETY OF FRESHâ€CUT "FUJI―APPLES BY INACTIVATION OF <i>LISTERIA MONOCYTOGENES</i> , <i>SALMONELLA</i> ENTERITIDIS AND <i>ESCHERICHIA COLI</i> O157:H7. Journal of Food Safety, 2009, 29, 236-252.	2.3	42
185	Review: Potential of High-Intensity Pulsed Electric Field Technology for Milk Processing. Food Engineering Reviews, 2010, 2, 17-27.	5.9	42
186	Impact of pulsed light treatments on antioxidant characteristics and quality attributes of fresh-cut apples. Innovative Food Science and Emerging Technologies, 2016, 33, 206-215.	5.6	42
187	Proximate composition, minerals and vitamins in selected canned vegetables. European Food Research and Technology, 2001, 212, 182-187.	3.3	41
188	Intake of Mediterranean vegetable soup treated by pulsed electric fields affects plasma vitamin C and antioxidant biomarkers in humans. International Journal of Food Sciences and Nutrition, 2005, 56, 115-124.	2.8	41
189	Physiological and microbiological changes in fresh-cut pears stored in high oxygen active packages compared with low oxygen active and passive modified atmosphere packaging. Postharvest Biology and Technology, 2008, 48, 295-301.	6.0	41
190	Effects of pulsed light treatments and pectin edible coatings on the quality of fresh ut apples: a hurdle technology approach. Journal of the Science of Food and Agriculture, 2017, 97, 261-268.	3.5	41
191	Impact of pulsed light treatments and storage time on the texture quality of fresh-cut tomatoes. Innovative Food Science and Emerging Technologies, 2018, 45, 29-35.	5.6	41
192	Impact of emulsifier nature and concentration on the stability of β-carotene enriched nanoemulsions during <i>in vitro</i> digestion. Food and Function, 2019, 10, 713-722.	4.6	41
193	Microbiological and biochemical changes in minimally processed fresh-cut Conference pears. European Food Research and Technology, 2003, 217, 4-9.	3.3	40
194	Kinetic Study of Anthocyanins, Vitamin C, and Antioxidant Capacity in Strawberry Juices Treated by High-Intensity Pulsed Electric Fields. Journal of Agricultural and Food Chemistry, 2008, 56, 8387-8393.	5.2	40
195	Antioxidant Content of Fresh-Cut Pears Stored in High-O2Active Packages Compared with Conventional Low-O2Active and Passive Modified Atmosphere Packaging. Journal of Agricultural and Food Chemistry, 2008, 56, 932-940.	5.2	40
196	Changes on flavor compounds throughout cold storage of watermelon juice processed by high-intensity pulsed electric fields or heat. Journal of Food Engineering, 2010, 100, 43-49.	5.2	40
197	Food Preservation by Pulsed Electric Fields: An Engineering Perspective. Food Engineering Reviews, 2011, 3, 94-107.	5.9	40
198	Pulsed light inactivation of naturally occurring moulds on wheat grain. Journal of the Science of Food and Agriculture, 2014, 94, 721-726.	3.5	39

#	Article	IF	CITATIONS
199	Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. Journal of Food Engineering, 2018, 229, 72-82.	5.2	39
200	Chitosan/tripolyphosphate nanoaggregates enhance the antibrowning effect of ascorbic acid on mushroom slices. Postharvest Biology and Technology, 2019, 156, 110934.	6.0	39
201	Enhancing phenolic content in carrots by pulsed electric fields during post-treatment time: Effects on cell viability and quality attributes. Innovative Food Science and Emerging Technologies, 2020, 59, 102252.	5.6	39
202	Modeling changes of headspace gas concentrations to describe the respiration of fresh-cut melon under low or superatmospheric oxygen atmospheres. Journal of Food Engineering, 2008, 85, 401-409.	5.2	38
203	Isoflavone profile of a high intensity pulsed electric field or thermally treated fruit juice-soymilk beverage stored under refrigeration. Innovative Food Science and Emerging Technologies, 2010, 11, 604-610.	5.6	38
204	Effects of combining ultraviolet and mild heat treatments on enzymatic activities and total phenolic contents in pineapple juice. Innovative Food Science and Emerging Technologies, 2014, 26, 511-516.	5.6	38
205	Influence of the Addition of Peach Dietary Fiber in Composition, Physical Properties and Acceptability of Reduced-Fat Muffins. Food Science and Technology International, 2001, 7, 425-431.	2.2	38
206	Aroma Profile and Volatiles Odor Activity Along Gold Cultivar Pineapple Flesh. Journal of Food Science, 2010, 75, S506-12.	3.1	37
207	Impact of pulsed light treatments on quality characteristics and oxidative stability of fresh-cut avocado. LWT - Food Science and Technology, 2014, 59, 320-326.	5.2	37
208	Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biology and Technology, 2017, 132, 195-201.	6.0	37
209	Determination of proteolytic activity in different milk systems. Food Chemistry, 2002, 79, 245-249.	8.2	36
210	Volatile compounds and changes in flavour-related enzymes during cold storage of high-intensity pulsed electric field- and heat-processed tomato juices. Journal of the Science of Food and Agriculture, 2010, 90, 1597-1604.	3.5	36
211	Physical and Structural Changes in Liquid Whole Egg Treated with Highâ€Intensity Pulsed Electric Fields. Journal of Food Science, 2011, 76, C257-64.	3.1	36
212	The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chemistry, 2020, 311, 126024.	8.2	36
213	Evaluation of Textural Properties and Microstructure During Storage of Minimally Processed Apples. Journal of Food Science, 2003, 68, 312-317.	3.1	35
214	Sensory quality and internal atmosphere of fresh-cut Golden Delicious apples. International Journal of Food Science and Technology, 2005, 40, 369-375.	2.7	35
215	Influence of Modified Atmosphere Packaging on Volatile Compounds and Physicochemical and Antioxidant Attributes of Fresh-Cut Pineapple (<i>Ananas comosus</i>). Journal of Agricultural and Food Chemistry, 2010, 58, 5042-5049.	5.2	35
216	Modulating Biopolymer Electrical Charge to Optimize the Assembly of Edible Multilayer Nanofilms by the Layer-by-Layer Technique. Biomacromolecules, 2015, 16, 2895-2903.	5.4	35

#	Article	IF	CITATIONS
217	Effect of Different Olive Oils on Bile Excretion in Rats Fed Cholesterol-Containing and Cholesterol-Free Diets. Journal of Agricultural and Food Chemistry, 2003, 51, 5774-5779.	5.2	34
218	High Hydrostatic Pressure and Mild Heat Treatments for the Modification of Orange Peel Dietary Fiber: Effects on Hygroscopic Properties and Functionality. Food and Bioprocess Technology, 2018, 11, 110-121.	4.7	34
219	Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food and Function, 2018, 9, 2282-2289.	4.6	33
220	Lessening polygalacturonase activity in a commercial enzyme preparation by exposure to pulsed electric fields. European Food Research and Technology, 2003, 217, 43-48.	3.3	32
221	High-Intensity Pulsed Electric Field Variables Affecting Staphylococcus aureus Inoculated in Milk. Journal of Dairy Science, 2006, 89, 3739-3748.	3.4	32
222	Influence of SO2 on the consumption of nitrogen compounds through alcoholic fermentation of must sterilized by pulsed electric fields. Food Chemistry, 2007, 103, 771-777.	8.2	32
223	Influence of SO2 on the evolution of volatile compounds through alcoholic fermentation of must stabilized by pulsed electric fields. European Food Research and Technology, 2008, 227, 401-408.	3.3	32
224	Application of innovative technologies, moderate-intensity pulsed electric fields and high-pressure thermal treatment, to preserve and/or improve the bioactive compounds content of pumpkin. Innovative Food Science and Emerging Technologies, 2018, 45, 53-61.	5.6	32
225	Antioxidant properties and shelfâ€life extension of freshâ€cut tomatoes stored at different temperatures. Journal of the Science of Food and Agriculture, 2008, 88, 2606-2614.	3.5	31
226	Impact of high-intensity pulsed electric field variables affecting peroxidase and lipoxygenase activities of watermelon juice. LWT - Food Science and Technology, 2010, 43, 897-902.	5.2	31
227	Bacterial inactivation and quality changes of freshâ€eut avocados as affected by intense light pulses of specific spectra. International Journal of Food Science and Technology, 2014, 49, 128-136.	2.7	31
228	Enhancing hydroxycinnamic acids and flavan-3-ol contents by pulsed electric fields without affecting quality attributes of apple. Food Research International, 2019, 121, 433-440.	6.2	31
229	Impact of high intensity pulsed electric fields or heat treatments on the fatty acid and mineral profiles of a fruit juice–soymilk beverage during storage. Food Control, 2011, 22, 1975-1983.	5.5	30
230	Effects of Novel Processing Techniques on Glucosinolates and Membrane Associated Myrosinases in Broccoli. Polish Journal of Food and Nutrition Sciences, 2014, 64, 17-25.	1.7	30
231	Valorization of agro-food by-products and their potential therapeutic applications. Food and Bioproducts Processing, 2021, 128, 247-258.	3.6	30
232	Changes in viscosity and pectolytic enzymes of tomato and strawberry juices processed by highâ€intensity pulsed electric fields. International Journal of Food Science and Technology, 2009, 44, 2268-2277.	2.7	29
233	Changes in Water-Soluble Vitamins and Antioxidant Capacity of Fruit Juice–Milk Beverages As Affected by High-Intensity Pulsed Electric Fields (HIPEF) or Heat during Chilled Storage. Journal of Agricultural and Food Chemistry, 2011, 59, 10034-10043.	5.2	29
234	Modeling the Inactivation of Listeria innocua and Escherichia coli in Fresh-Cut Tomato Treated with Pulsed Light. Food and Bioprocess Technology, 2017, 10, 266-274.	4.7	29

#	Article	IF	CITATIONS
235	The Effect of Sodium Carboxymethylcellulose on the Stability and Bioaccessibility of Anthocyanin Water-in-Oil-in-Water Emulsions. Food and Bioprocess Technology, 2018, 11, 2229-2241.	4.7	29
236	The influence of alcohol-containing and alcohol-free beverages on lipid levels and lipid peroxides in serum of rats. Journal of Nutritional Biochemistry, 1998, 9, 682-686.	4.2	28
237	Natural Antioxidants Preserve the Lipid Oxidative Stability of Minimally Processed Avocado Purée. Journal of Food Science, 2005, 70, S325.	3.1	28
238	Effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice. Food Microbiology, 2009, 26, 491-496.	4.2	28
239	The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field. Journal of Dairy Science, 2009, 92, 2514-2523.	3.4	28
240	Building bridges: an integrated strategy for sustainable food production throughout the value chain. Molecular Breeding, 2013, 32, 743-770.	2.1	28
241	Impact of High-Intensity Pulsed Electric Fields or Thermal Treatment on the Quality Attributes of Date Juice through Storage. Journal of Food Processing and Preservation, 2017, 41, e13052.	2.0	28
242	Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. Journal of Functional Foods, 2019, 59, 206-214.	3.4	28
243	Formation of patulin-glutathione conjugates induced by pulsed light: A tentative strategy for patulin degradation in apple juices. Food Chemistry, 2020, 315, 126283.	8.2	28
244	Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants, 2021, 10, 417.	5.1	28
245	Effects of Highâ€Intensity Pulsed Electric Fields on Lipoxygenase and Hydroperoxide Lyase Activities in Tomato Juice. Journal of Food Science, 2009, 74, C595-601.	3.1	27
246	High intensity pulsed electric fields and heat treatments applied to a protease from Bacillus subtilis. A comparison study of multiple systems. Journal of Food Engineering, 2005, 69, 317-323.	5.2	26
247	Validation and Comparison of Analytical Methods Based on the Release of p-Nitrophenol to Determine Lipase Activity in Milk. Journal of Dairy Science, 2001, 84, 1590-1596.	3.4	25
248	Internal atmosphere, quality attributes and sensory evaluation of MAP packaged fresh ut Conference pears. International Journal of Food Science and Technology, 2007, 42, 208-213.	2.7	25
249	Mechanical and chemical properties of Gold cultivar pineapple flesh (Ananas comosus). European Food Research and Technology, 2010, 230, 675-686.	3.3	25
250	Highâ€Intensity Pulsed Electric Fields Processing Parameters Affecting Polyphenoloxidase Activity of Strawberry Juice. Journal of Food Science, 2010, 75, C641-6.	3.1	25
251	Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages. Beverages, 2016, 2, 14.	2.8	25
252	Influence of mandarin fiber addition on physico-chemical properties of nanoemulsions containing β-carotene under simulated gastrointestinal digestion conditions. LWT - Food Science and Technology, 2017, 84, 331-337.	5.2	25

#	Article	IF	CITATIONS
253	Effects of Pulsed Electric Fields Processing Strategies on Health-Related Compounds of Plant-Based Foods. Food Engineering Reviews, 2017, 9, 213-225.	5.9	25
254	Natural antimicrobial agents incorporated in active packaging to preserve the quality of fresh fruits and vegetables. Stewart Postharvest Review, 0, 4, 1-9.	0.7	25
255	k-carrageenan edible films for beef: Honey and bee pollen phenolic compounds improve their antioxidant capacity. Food Hydrocolloids, 2022, 124, 107250.	10.7	25
256	Delivery of Flavor and Active Ingredients Using Edible Films and Coatings. , 2009, , 295-313.		24
257	Nanostructured Lipid-Based Delivery Systems as a Strategy to Increase Functionality of Bioactive Compounds. Foods, 2020, 9, 325.	4.3	24
258	Evolución del color, azúcares y HMF en el tratamiento térmico de zumo de manzana/Colour, sugars and HMF evolution during thermal treatment of apple juice. Food Science and Technology International, 1996, 2, 101-110.	2.2	23
259	Effects of High-Intensity Pulsed Electric Fields Processing Parameters on the Chlorophyll Content and Its Degradation Compounds in Broccoli Juice. Food and Bioprocess Technology, 2014, 7, 1137-1148.	4.7	23
260	Formulation of Antimicrobial Edible Nanoemulsions with Pseudo-Ternary Phase Experimental Design. Food and Bioprocess Technology, 2014, 7, 3022-3032.	4.7	23
261	Emulsion-Based Nanostructures for the Delivery of Active Ingredients in Foods. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	23
262	High-power ultrasound as pre-treatment in different stages of soymilk manufacturing process to increase the isoflavone content. Ultrasonics Sonochemistry, 2018, 49, 154-160.	8.2	23
263	<i>In vitro</i> digestibility and release of a mango peel extract encapsulated within water-in-oil-in-water (W ₁ /O/W ₂) emulsions containing sodium carboxymethyl cellulose. Food and Function, 2019, 10, 6110-6120.	4.6	23
264	Development, physical stability and bioaccessibility of β-carotene-enriched tertiary emulsions. Journal of Functional Foods, 2020, 64, 103615.	3.4	23
265	Modelling the recovery of biocompounds from peach waste assisted by pulsed electric fields or thermal treatment. Journal of Food Engineering, 2021, 290, 110196.	5.2	23
266	Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules, 2021, 11, 977.	4.0	23
267	Combinational Edible Antimicrobial FilmsÂand Coatings. , 2016, , 633-646.		22
268	Beverage Emulsions: Key Aspects of Their Formulation and Physicochemical Stability. Beverages, 2018, 4, 70.	2.8	22
269	Effectiveness of nanoemulsions of clove and lemongrass essential oils and their major components against Escherichia coli and Botrytis cinerea. Journal of Food Science and Technology, 2019, 56, 2721-2736.	2.8	22
270	Effect of pulsed electric fields on carotenoid and phenolic bioaccessibility and their relationship with carrot structure. Food and Function, 2021, 12, 2772-2783.	4.6	22

#	Article	IF	CITATIONS
271	Enhancing carotenoid and phenolic contents in plant food matrices by applying non-thermal technologies: Bioproduction vs improved extractability. Trends in Food Science and Technology, 2021, 112, 622-630.	15.1	22
272	Effect of High-Oxygen Atmospheres on the Antioxidant Potential of Fresh-Cut Tomatoes. Journal of Agricultural and Food Chemistry, 2009, 57, 6603-6610.	5.2	21
273	Differences in free amino acid profile of non-thermally treated tomato and strawberry juices. Journal of Food Composition and Analysis, 2013, 32, 51-58.	3.9	21
274	Hurdle technology applied to prickly pear beverages for inhibiting <i>Saccharomyces cerevisiae</i> and <i>Escherichia coli</i> . Letters in Applied Microbiology, 2015, 60, 558-564.	2.2	21
275	Improving quality of freshâ€cut mango using polysaccharideâ€based edible coatings. International Journal of Food Science and Technology, 2018, 53, 938-945.	2.7	21
276	Improving the In Vitro Bioaccessibility of β-Carotene Using Pectin Added Nanoemulsions. Foods, 2020, 9, 447.	4.3	21
277	Seed oils improve lipid metabolism and increase antioxidant potential in rats fed diets containing cholesterol. Nutrition Research, 2003, 23, 317-330.	2.9	20
278	Formation of Double (W1/O/W2) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds. Food and Bioprocess Technology, 2019, 12, 422-435.	4.7	20
279	Delivery of β-carotene to the in vitro intestinal barrier using nanoemulsions with lecithin or sodium caseinate as emulsifiers. LWT - Food Science and Technology, 2021, 135, 110059.	5.2	20
280	Novel Processing Technologies as Compared to Thermal Treatment on the Bioaccessibility and Caco-2 Cell Uptake of Carotenoids from Tomato and Kale-Based Juices. Journal of Agricultural and Food Chemistry, 2019, 67, 10185-10194.	5.2	19
281	Pulsed electric field treatment strategies to increase bioaccessibility of phenolic and carotenoid compounds in oil-added carrot purees. Food Chemistry, 2021, 364, 130377.	8.2	19
282	Food Safety Aspects of Pulsed Electric Fields. , 2005, , 183-217.		18
283	Changes of carotenoid content in carrots after application of pulsed electric field treatments. LWT - Food Science and Technology, 2021, 147, 111408.	5.2	18
284	Recent Advances toward the Application of Non-Thermal Technologies in Food Processing: An Insight on the Bioaccessibility of Health-Related Constituents in Plant-Based Products. Foods, 2021, 10, 1538.	4.3	18
285	The quality of peach jams stabilized with peach dietary fiber. European Food Research and Technology, 2000, 211, 336-341.	3.3	17
286	Models in a Bayesian framework for inactivation of pectinesterase in a commercial enzyme formulation by pulsed electric fields. European Food Research and Technology, 2005, 221, 255-264.	3.3	17
287	New Kinetic Approach to the Evolution of Polygalacturonase (EC 3.2.1.15) Activity in a Commercial Enzyme Preparation Under Pulsed Electric Fields. Journal of Food Science, 2006, 71, E262-E269.	3.1	17
288	Oxidative rancidity in avocado purée as affected by α-tocopherol, sorbic acid and storage atmosphere. European Food Research and Technology, 2007, 226, 295-300.	3.3	17

#	Article	IF	CITATIONS
289	ANTIOXIDANT CAPACITY, NUTRITIONAL AND FUNCTIONAL COMPOSITION OF EDIBLE DAHLIA FLOWERS. Revista Chapingo, Serie Horticultura, 2014, XX, 101-116.	0.4	17
290	Effect of pulsed light, edible coating, and dipping on the phenolic profile and antioxidant potential of fresh-cut mango. Journal of Food Processing and Preservation, 2018, 42, e13591.	2.0	17
291	Effectiveness of pulsed light treatments assisted by mild heat on Saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. Innovative Food Science and Emerging Technologies, 2020, 66, 102517.	5.6	17
292	Encapsulated Pine Bark Polyphenolic Extract during Gastrointestinal Digestion: Bioaccessibility, Bioactivity and Oxidative Stress Prevention. Foods, 2021, 10, 328.	4.3	17
293	A natural clouding agent from orange peels obtained using polygalacturonase and cellulase. Food Chemistry, 2005, 92, 55-61.	8.2	16
294	Increased Inactivation of Exopolysaccharide-Producing Pediococcus parvulus in Apple Juice by Combined Treatment with Enterocin AS-48 and High-Intensity Pulsed Electric Field. Journal of Food Protection, 2010, 73, 39-43.	1.7	16
295	Using Antibrowning Agents to Enhance Quality and Safety of Freshâ€Cut Avocado Treated with Intense Light Pulses. Journal of Food Science, 2011, 76, S528-34.	3.1	16
296	Kinetics of Peroxidase Inactivation in Carrot Juice Treated with Pulsed Electric Fields. Journal of Food Science, 2013, 78, E222-8.	3.1	16
297	<i>In Vitro</i> Bioaccessibility of Colored Carotenoids in Tomato Derivatives as Affected by Ripeness Stage and the Addition of Different Types of Oil. Journal of Food Science, 2018, 83, 1404-1411.	3.1	16
298	Induced accumulation of individual carotenoids and quality changes in tomato fruits treated with pulsed electric fields and stored at different post-treatments temperatures. Postharvest Biology and Technology, 2018, 146, 117-123.	6.0	16
299	Factors affecting the formation of highly concentrated emulsions and nanoemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123577.	4.7	16
300	In vitro bioaccessibility of isoflavones from a soymilk-based beverage as affected by thermal and non-thermal processing. Innovative Food Science and Emerging Technologies, 2020, 66, 102504.	5.6	16
301	Protein/Polysaccharide Complexes to Stabilize Decane-in-Water Nanoemulsions. Food Biophysics, 2020, 15, 335-345.	3.0	16
302	Optimizing critical high-intensity pulsed electric fields treatments for reducing pectolytic activity and viscosity changes in watermelon juice. European Food Research and Technology, 2010, 231, 509-517.	3.3	15
303	High Hydrostatic Pressure and Temperature Applied to Preserve the Antioxidant Compounds of Mango Pulp (Mangifera indica L.). Food and Bioprocess Technology, 2017, 10, 639-649.	4.7	15
304	Modeling High-Intensity Pulsed Electric Field Inactivation of a Lipase from Pseudomonas fluorescens. Journal of Dairy Science, 2006, 89, 4096-4104.	3.4	14
305	Respiratory Rate and Quality Changes in Fresh-Cut Pears as Affected by Superatmospheric Oxygen. Journal of Food Science, 2007, 72, E456-E463.	3.1	14
306	Effect of ripeness at processing on freshâ€cut â€~Flor de Invierno' pears packaged under modified atmosphere conditions. International Journal of Food Science and Technology, 2009, 44, 900-909.	2.7	14

#	Article	IF	CITATIONS
307	Mineral and fatty acid profile of high intensity pulsed electric fields or thermally treated fruit juice-milk beverages stored under refrigeration. Food Control, 2017, 80, 236-243.	5.5	14
308	Effect of High Hydrostatic Pressure and Temperature on Enzymatic Activity and Quality Attributes in Mango Puree Varieties (cv. Tommy Atkins and Manila). Food and Bioprocess Technology, 2018, 11, 1211-1221.	4.7	14
309	Kinetics of the changes in the antioxidant potential of fresh-cut tomatoes as affected by pulsed light treatments and storage time. Journal of Food Engineering, 2018, 237, 146-153.	5.2	14
310	Interfacial activity of phenolic-rich extracts from avocado fruit waste: Influence on the colloidal and oxidative stability of emulsions and nanoemulsions. Innovative Food Science and Emerging Technologies, 2021, 69, 102665.	5.6	14
311	Influence of the extraction conditions on the carbohydrate and phenolic composition of functional pectin from persimmon waste streams. Food Hydrocolloids, 2022, 123, 107066.	10.7	14
312	Unveiling the Antioxidant Therapeutic Functionality of Sustainable Olive Pomace Active Ingredients. Antioxidants, 2022, 11, 828.	5.1	14
313	Oxidative behaviour of freshâ€eut â€~Fuji' apples treated with stabilising substances. Journal of the Science of Food and Agriculture, 2008, 88, 1770-1776.	3.5	13
314	Influence of Cooking Conditions on Carotenoid Content and Stability in Porridges Prepared from High-Carotenoid Maize. Plant Foods for Human Nutrition, 2017, 72, 113-119.	3.2	13
315	Physicochemical and Antimicrobial Characterization of Beeswax–Starch Food-Grade Nanoemulsions Incorporating Natural Antimicrobials. International Journal of Molecular Sciences, 2017, 18, 2712.	4.1	13
316	High-intensity pulsed electric fields or thermal treatment of broccoli juice: the effects of processing on minerals and free amino acids. European Food Research and Technology, 2020, 246, 539-548.	3.3	13
317	Pulsed Electric Fields Technology for Healthy Food Products. Food Engineering Reviews, 2021, 13, 509-523.	5.9	13
318	FLOW PROPERTIES OF ORANGE DIETARY FIBER SUSPENSIONS. Journal of Texture Studies, 1999, 30, 245-257.	2.5	12
319	Enzymatic Inactivation by Pulsed Electric Fields. , 2005, , 155-181.		12
320	Impact of critical highâ€intensity pulsed electric field processing parameters on oxidative enzymes and color of broccoli juice. Journal of Food Processing and Preservation, 2020, 44, e14362.	2.0	12
321	Effect of Pulsed Electric Fields (PEF) on Extraction Yield and Stability of Oil Obtained from Dry Pecan Nuts (Carya illinoinensis (Wangenh. K. Koch)). Foods, 2021, 10, 1541.	4.3	12
322	Encapsulation and controlled release of phycocyanin during the in vitro digestion using polysaccharide-added double emulsions (W1/O/W2). Food Structure, 2022, 31, 100249.	4.5	12
323	Proteins of beer affect lipid levels in rats. Nutrition Research, 2001, 21, 1159-1169.	2.9	11
324	Volatile Profile and Sensory Evaluation of Tomato Juices Treated with Pulsed Electric Fields. Journal of Agricultural and Food Chemistry, 2013, 61, 1977-1984.	5.2	11

#	Article	IF	CITATIONS
325	Quality Changes in Mango Juice Treated by High-Intensity Pulsed Electric Fields Throughout the Storage. Food and Bioprocess Technology, 2017, 10, 1970-1983.	4.7	11
326	Opportunities and Challenges of Ultrasound for Food Processing. , 2017, , 457-497.		11
327	Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum. Food Science and Technology International, 2018, 24, 145-160.	2.2	11
328	High intensity pulsed electric fields or thermal treatments effects on the amino acid profile of a fruit juice-soymilk beverage during refrigeration storage. Innovative Food Science and Emerging Technologies, 2012, 16, 47-53.	5.6	10
329	Pulsos de luz intensa: inactivación microbiana en frutas y hortalizas. CYTA - Journal of Food, 2013, 11, 234-242.	1.9	10
330	Enzyme activity and colour changes in apple juice pasteurised thermally and by pulsed electric fields. Acta Alimentaria, 2013, 42, 45-54.	0.7	10
331	Layer-by-Layer Assembly of Food-Grade Alginate/Chitosan Nanolaminates: Formation and Physicochemical Characterization. Food Biophysics, 2017, 12, 299-308.	3.0	10
332	Ultraviolet/visible intense pulsed light irradiation of freshâ€cut avocado enhances its phytochemicals content and preserves quality attributes. Journal of Food Processing and Preservation, 2021, 45, e15289.	2.0	10
333	Applying Pulsed Electric Fields to Whole Carrots Enhances the Bioaccessibility of Carotenoid and Phenolic Compounds in Derived Products. Foods, 2021, 10, 1321.	4.3	10
334	Emulsion gels and oil-filled aerogels as curcumin carriers: Nanostructural characterization of gastrointestinal digestion products. Food Chemistry, 2022, 387, 132877.	8.2	10
335	Beer Consumption and Changes in Stability of Human Serum Proteins. Journal of Agricultural and Food Chemistry, 2001, 49, 1441-1445.	5.2	9
336	Modeling within the Bayesian framework, the inactivation of pectinesterase in gazpacho by pulsed electric fields. Journal of Food Engineering, 2009, 95, 446-452.	5.2	9
337	Antimicrobial Kinetics of Nanoemulsions Stabilized with Protein:Pectin Electrostatic Complexes. Food and Bioprocess Technology, 2020, 13, 1893-1907.	4.7	9
338	Incorporation of antimicrobial nanoemulsions into complex foods: A case study in an apple juice-based beverage. LWT - Food Science and Technology, 2021, 141, 110926.	5.2	9
339	Greater bioavailability of xanthophylls compared to carotenes from orange juice (high-pressure) Tj ETQq1 1 0 crossover study in healthy individuals. Food Chemistry, 2022, 371, 130821.	.784314 rgB1 8.2	[Overlock 10 9
340	Valorization of Onion Waste by Obtaining Extracts Rich in Phenolic Compounds and Feasibility of Its Therapeutic Use on Colon Cancer. Antioxidants, 2022, 11, 733.	5.1	9
341	Effect of modified atmosphere packaging on the quality of fresh-cut fruits. Stewart Postharvest Review, 2006, 2, 1-8.	0.7	8
342	Antioxidant activity of thermal or non-thermally treated strawberry and mango juices by Saccharomyces cerevisiae growth based assays. LWT - Food Science and Technology, 2016, 74, 55-61.	5.2	8

#	Article	IF	CITATIONS
343	Application of Pulsed Electric Fields PEF on Pecan Nuts Carya illinoinensis Wangenh. K. Koch: Oil Extraction Yield and Compositional Characteristics of the Oil and Its By-product. Food Engineering Reviews, 2021, 13, 676-685.	5.9	8
344	INACTIVATION OF <i>LISTERIA MONOCYTOGENES</i> , <i>SALMONELLA ENTERITIDIS</i> AND <i>ESCHERICHIA COLI</i> O157:H7 AND SHELF LIFE EXTENSION OF FRESHâ€CUT PEARS USING MALIC ACID AND QUALITY STABILIZING COMPOUNDS. Journal of Food Quality, 2009, 32, 539-565.	2.6	7
345	Changes in bioactive compounds content and antioxidant capacity of pecan nuts [Carya illinoinensis (Wangenh. K. Koch)] during storage. Revista Mexicana De Ingeniera Quimica, 2020, 19, 1439-1452.	0.4	7
346	Impact of High-Intensity Pulsed Electric Fields on Bioactive Compounds in Mediterranean Plant-based Foods. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	6
347	Enzymatic Inactivation by Pulsed Electric Fields. , 2014, , 155-168.		6
348	Non-thermal Processing Technologies. , 2014, , 443-465.		6
349	Effects of High Intensity Pulsed Electric Fields or Thermal Pasteurization and Refrigerated Storage on Antioxidant Compounds of Fruit Juice-Milk Beverages. Part I: Phenolic Acids and Flavonoids. Journal of Food Processing and Preservation, 2017, 41, e12912.	2.0	6
350	Effects of High Intensity Pulsed Electric Fields or Thermal Treatments and Refrigerated Storage on Antioxidant Compounds of Fruit Juice-Milk Beverages. Part II: Carotenoids. Journal of Food Processing and Preservation, 2017, 41, e13143.	2.0	6
351	Lipid Digestibility and Polyphenols Bioaccessibility of Oil-in-Water Emulsions Containing Avocado Peel and Seed Extracts as Affected by the Presence of Low Methoxyl Pectin. Foods, 2021, 10, 2193.	4.3	6
352	Fabrication of edible solid lipid nanoparticle from beeswax/propolis wax by spontaneous emulsification: Optimization, characterization and stability. Food Chemistry, 2022, 387, 132934.	8.2	6
353	Fruit Preservation by Ohmic Heating and Pulsed Electric Fields. Food Engineering Series, 2018, , 441-456.	0.7	5
354	Influence of lipid nanoparticle physical state on \hat{l}^2 -carotene stability kinetics under different environmental conditions. Food and Function, 2021, 12, 840-851.	4.6	5
355	Formation and Stabilization of W1/O/W2 Emulsions with Gelled Lipid Phases. Molecules, 2021, 26, 312.	3.8	5
356	Efficacy of Pectin-Based Coating Added with a Lemon Byproduct Extract on Quality Preservation of Fresh-Cut Carrots. Foods, 2022, 11, 1314.	4.3	5
357	Nota. Cinética de pardeamiento no enzimÃ _i tico de zumo de pera concentrado Note./ Non-enzymatic browning kinetics of concentrated pear juice. Food Science and Technology International, 1997, 3, 213-218.	2.2	4
358	Cloud stability, color, and extraction yield of a natural clouding agent obtained from orange peel by an enzymatic treatment. European Food Research and Technology, 2003, 216, 312-318.	3.3	4
359	Pulsed Electric Field Processing of Fluid Foods. , 2012, , 63-108.		4
360	Juice preservation by pulsed electric fields. Stewart Postharvest Review, 0, 8, 1-4.	0.7	4

#	Article	IF	CITATIONS
361	Impact of Pulsed Electric Field Pre-Treatment on the Isoflavone Profile of Soymilk. Beverages, 2022, 8, 19.	2.8	4
362	Pros and cons of minimally processed foods. Trends in Food Science and Technology, 2007, 18, 582.	15.1	3
363	Pulsed Electric Field and Fermentation. Food Engineering Series, 2016, , 85-123.	0.7	3
364	Nanostructured Systems to Increase Bioavailability of Food Ingredients. , 2019, , 13-33.		3
365	Challenges and Benefits of Using Pecan Kernels, Derivatives, and Byproducts as Alternative Ingredients in Food Product Development. Food Reviews International, 2023, 39, 2530-2542.	8.4	3
366	Dietary Fiber in Fruits and Vegetables. Food Engineering Series, 2020, , 123-152.	0.7	3
367	Pulsed Electric Fields to Obtain Safe and Healthy Shelf-Stable Liquid Foods. NATO Science for Peace and Security Series A: Chemistry and Biology, 2011, , 205-222.	0.5	3
368	Impact of high-intensity pulsed electric fields on bioactive compounds in Mediterranean plant-based foods. Natural Product Communications, 2009, 4, 741-6.	0.5	3
369	Food Safety Aspects of Pulsed Electric Fields. , 2014, , 169-178.		2
370	Carotenoids in Nonthermally Treated Fruit Juices. , 2015, , 637-642.		2
371	Screening the Antioxidant Activity of Thermal or Non-Thermally Treated Fruit Juices by In Vitro and In Vivo Assays. Beverages, 2022, 8, 36.	2.8	2
372	Effect of antioxidants and proteins on the quality of Israeli Jaffa red and blond grapefruits. European Food Research and Technology, 2005, 221, 119-124.	3.3	1
373	Grape Juice. , 0, , 421-437.		1
374	Impact of pulsed electric fields on food enzymes and shelf-life. , 2007, , 212-246.		1
375	OXIDATIVE BEHAVIOUR OF FRESH-CUT 'FUJI' APPLES TREATED WITH CHEMICAL STABILIZERS. Acta Horticulturae, 2007, , 315-322.	0.2	1
376	Oxidative stability of antioxidants in fruits and vegetables. , 2010, , 391-423.		1
377	Fresh-cut fruits: Pineapple. , 2020, , 511-518.		1
378	Fresh-cut fruits: Apples and pears. , 2020, , 487-494.		1

#	Article	IF	CITATIONS
379	Nanoemulsion design for the delivery of omega-3 fatty acids. , 2021, , 295-319.		1
380	Using metabolomics to improve the quality of harvested fruit CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-8.	1.0	1
381	Impact of pulsed electric fields on food enzymes and shelf-life. , 2007, , 212-246.		1
382	Current advances in quality maintenance of fresh-cut fruits. Stewart Postharvest Review, 0, 4, 1-8.	0.7	1
383	Emerging Nonthermal Technologies in Fruit Juice Processing. Contemporary Food Engineering, 2014, , 217-236.	0.2	1
384	CHANGES IN BIOACTIVE COMPOUNDS CONCENTRATION AND PHYSICOCHEMICAL PROPERTIES OF MANGO SMOOTHIES TREATED BY ULTRASOUND. Revista Mexicana De Ingeniera Quimica, 2018, 17, 131-144.	0.4	1
385	Fresh-Cut Fruits. , 0, , 879-899.		0
386	A NOVEL FUNCTIONAL FRESH-CUT PRODUCT OF PAPAYA (CARICA PAPAYA L. 'MARADOL') USING VACUUM IMPREGNATION AND EDIBLE COATINGS. Acta Horticulturae, 2014, , 315-321.	0.2	0
387	EFFoST: An information powerhouse on European food science and technology. Trends in Food Science and Technology, 2021, 113, 430-432.	15.1	0
388	High-Intensity Pulsed Electric Field Applications in Fruit Processing. Contemporary Food Engineering, 2012, , 149-184.	0.2	0
389	Pulsed Electric Fields Bioproduction of Secondary Metabolites in Plant Systems. , 2016, , 1-12.		0
390	Pulsed Electric Fields Bioproduction of Secondary Metabolites in Plant Systems. , 2017, , 2193-2204.		0
391	Pulsed Electric Fields Effects on Health-Related Compounds and Antioxidant Capacity of Tomato Juice. , 2017, , 2225-2238.		0