## Mark Zervas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5758932/publications.pdf Version: 2024-02-01



MADE 7FDVAS

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rare and Common Variants Conferring Risk of Tooth Agenesis. Journal of Dental Research, 2018, 97,<br>515-522.                                                                                      | 5.2  | 52        |
| 2  | MAP1B mutations cause intellectual disability and extensive white matter deficit. Nature Communications, 2018, 9, 3456.                                                                            | 12.8 | 21        |
| 3  | The Temporal Contribution of the Gbx2 Lineage to Cerebellar Neurons. Frontiers in Neuroanatomy, 2017, 11, 50.                                                                                      | 1.7  | 5         |
| 4  | Temporal Expression of Wnt1 Defines the Competency State and Terminal Identity of Progenitors in the Developing Cochlear Nucleus and Inferior Colliculus. Frontiers in Neuroanatomy, 2017, 11, 67. | 1.7  | 2         |
| 5  | Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.                          | 2.1  | 43        |
| 6  | Temporal and Mosaic Tsc1 Deletion in the Developing Thalamus Disrupts Thalamocortical Circuitry,<br>Neural Function, and Behavior. Neuron, 2013, 78, 895-909.                                      | 8.1  | 60        |
| 7  | Dynamic temporal requirement of <i>Wnt1</i> in midbrain dopamine neuron development. Development<br>(Cambridge), 2013, 140, 1342-1352.                                                             | 2.5  | 44        |
| 8  | Genetic dissection of midbrain dopamine neuron development in vivo. Developmental Biology, 2012, 372, 249-262.                                                                                     | 2.0  | 17        |
| 9  | Wnt1 expression temporally allocates upper rhombic lip progenitors and defines their terminal cell fate in the cerebellum. Molecular and Cellular Neurosciences, 2012, 49, 217-229.                | 2.2  | 32        |
| 10 | The Lineage Contribution and Role of Gbx2 in Spinal Cord Development. PLoS ONE, 2011, 6, e20940.                                                                                                   | 2.5  | 24        |
| 11 | Molecular organization and timing of <i>Wnt1</i> expression define cohorts of midbrain dopamine neuron progenitors in vivo. Journal of Comparative Neurology, 2011, 519, 2978-3000.                | 1.6  | 32        |
| 12 | Timing of <i>Sonic hedgehog</i> and <i>Gli1</i> expression segregates midbrain dopamine neurons.<br>Journal of Comparative Neurology, 2011, 519, 3001-3018.                                        | 1.6  | 59        |
| 13 | Tamoxifen dose response and conditional cell marking: Is there control?. Molecular and Cellular Neurosciences, 2010, 45, 132-138.                                                                  | 2.2  | 21        |
| 14 | Comparative analysis of conditional reporter alleles in the developing embryo and embryonic nervous system. Gene Expression Patterns, 2009, 9, 475-489.                                            | 0.8  | 17        |
| 15 | A Practical Approach to Genetic Inducible Fate Mapping: A Visual Guide to Mark and Track Cells<br><em>In Vivo</em> . Journal of Visualized Experiments, 2009, , .                                  | 0.3  | 17        |
| 16 | Genetic inducible fate mapping in mouse: Establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Developmental Dynamics, 2006, 235, 2376-2385.                      | 1.8  | 173       |
| 17 | Impaired hippocampal long-term potentiation in microtubule-associated protein 1B-deficient mice.<br>Journal of Neuroscience Research, 2005, 82, 83-92.                                             | 2.9  | 25        |
| 18 | Classical Embryological Studies and Modern Genetic Analysis of Midbrain and Cerebellum<br>Development. Current Topics in Developmental Biology, 2005, 69, 101-138.                                 | 2.2  | 86        |

MARK ZERVAS

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cell Behaviors and Genetic Lineages of the Mesencephalon and Rhombomere 1. Neuron, 2004, 43, 345-357.                                                                                                                         | 8.1 | 265       |
| 20 | Critical role for glycosphingolipids in Niemann-Pick disease type C. Current Biology, 2001, 11, 1283-1287.                                                                                                                    | 3.9 | 308       |
| 21 | Neurons in Niemann-Pick Disease Type C Accumulate Gangliosides as Well as Unesterified Cholesterol<br>and Undergo Dendritic and Axonal Alterations. Journal of Neuropathology and Experimental<br>Neurology, 2001, 60, 49-64. | 1.7 | 236       |
| 22 | Gangliosides as Modulators of Dendritogenesis in Normal and Storage Disease-affected Pyramidal<br>Neurons. Cerebral Cortex, 2000, 10, 1028-1037.                                                                              | 2.9 | 77        |
| 23 | Ferret pyramidal cell dendritogenesis: Changes in morphology and ganglioside expression during cortical development. , 1999, 413, 429-448.                                                                                    |     | 36        |
| 24 | GM2 Ganglioside as a Regulator of Pyramidal Neuron Dendritogenesisa. Annals of the New York<br>Academy of Sciences, 1998, 845, 188-199.                                                                                       | 3.8 | 32        |
| 25 | Neuronal abnormalities in microtubule-associated protein 1B mutant mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1270-1275.                                                 | 7.1 | 150       |