Jose L Jimenez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/575865/publications.pdf

Version: 2024-02-01

498 papers 77,055 citations

129 h-index 237 g-index

816 all docs

816 docs citations

816 times ranked

20298 citing authors

#	Article	IF	CITATIONS
1	The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.	1.9	3,486
2	Evolution of Organic Aerosols in the Atmosphere. Science, 2009, 326, 1525-1529.	6.0	3,374
3	Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Analytical Chemistry, 2006, 78, 8281-8289.	3.2	1,968
4	Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyâ€influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 2007, 34, .	1.5	1,773
5	Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 2007, 26, 185-222.	2.8	1,708
6	O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environmental Science & Environmental Science & 2008, 42, 4478-4485.	4.6	1,524
7	Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 2009, 9, 2891-2918.	1.9	1,276
8	Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophysical Research Letters, 2006, 33, .	1.5	1,027
9	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	4.8	933
10	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.	1.9	908
11	Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nature Chemistry, 2011, 3, 133-139.	6.6	890
12	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Science and Technology, 2004, 38, 1185-1205.	1.5	811
13	Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	801
14	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.	1.9	764
15	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 2015, 15, 253-272.	1.9	736
16	A New Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)â€"Instrument Description and First Field Deployment. Aerosol Science and Technology, 2005, 39, 637-658.	1.5	719
17	Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 2018, 359, 760-764.	6.0	716
18	Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417, 632-636.	13.7	705

#	Article	IF	Citations
19	A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. Journal of Aerosol Science, 2004, 35, 909-922.	1.8	702
20	Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Science and Technology, 2012, 46, 258-271.	1.5	699
21	Airborne transmission of respiratory viruses. Science, 2021, 373, .	6.0	693
22	Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet, The, 2021, 397, 1603-1605.	6.3	657
23	Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry. Environmental Science & Envir	4.6	617
24	Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics, 2005, 5, 3289-3311.	1.9	572
25	Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmospheric Chemistry and Physics, 2010, 10, 1155-1169.	1.9	554
26	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
27	Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 2010, 329, 1513-1516.	6.0	541
28	Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) $\hat{a} \in \text{Part 1}$: Fine particle composition and organic source apportionment. Atmospheric Chemistry and Physics, 2009, 9, 6633-6653.	1.9	525
29	Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 2011, 11, 12049-12064.	1.9	520
30	Transmission of SARSâ€CoVâ€2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 2021, 31, 314-323.	2.0	505
31	Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 2011, 11, 6465-6474.	1.9	493
32	Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry. Analytical Chemistry, 2007, 79, 8350-8358.	3.2	490
33	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.	1.9	449
34	Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6670-6675.	3.3	437
35	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	1.9	433
36	Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmospheric Chemistry and Physics, 2011, 11, 12109-12136.	1.9	421

#	Article	IF	CITATIONS
37	A missing sink for gasâ€phase glyoxal in Mexico City: Formation of secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	1.5	415
38	A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophysical Research Letters, 2010, 37, .	1.5	412
39	Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmospheric Chemistry and Physics, 2008, 8, 4027-4048.	1.9	411
40	Chase Studies of Particulate Emissions from in-use New York City Vehicles. Aerosol Science and Technology, 2004, 38, 555-573.	1.5	407
41	Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers. Atmospheric Environment, 2004, 38, 5745-5758.	1.9	384
42	Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	374
43	Organic Aerosols in the Earth's Atmosphere. Environmental Science & Technology, 2009, 43, 7614-7618.	4.6	374
44	Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations. Environmental Science & Emp; Technology, 2009, 43, 2443-2449.	4.6	365
45	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	1.9	363
46	High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmospheric Chemistry and Physics, 2013, 13, 6151-6164.	1.9	355
47	An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation. Atmospheric Chemistry and Physics, 2010, 10, 8697-8760.	1.9	349
48	Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. Environmental Science & Emp; Technology, 2017, 51, 1074-1093.	4.6	348
49	Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmospheric Chemistry and Physics, 2009, 9, 7551-7575.	1.9	347
50	Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chemistry and Physics, 2006, 6, 925-946.	1.9	341
51	A Case Study of Urban Particle Acidity and Its Influence on Secondary Organic Aerosol. Environmental Science & Environmental S	4.6	341
52	Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 5491-5514.	1.9	340
53	Real-Time Methods for Estimating Organic Component Mass Concentrations from Aerosol Mass Spectrometer Data. Environmental Science & Environmental Scie	4.6	336
54	Relating hygroscopicity and composition of organic aerosol particulate matter. Atmospheric Chemistry and Physics, 2011, 11, 1155-1165.	1.9	326

#	Article	IF	CITATIONS
55	Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO. Atmospheric Chemistry and Physics, 2010, 10, 5257-5280.	1.9	325
56	Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 525-546.	1.9	321
57	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	1.9	308
58	Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, andm-Xylene Using an Aerodyne Aerosol Mass Spectrometer. Environmental Science & Environmental Science & 2005, 39, 5674-5688.	4.6	307
59	Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2103-2162.	1.9	307
60	Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmospheric Chemistry and Physics, 2011, 11, 12453-12473.	1.9	298
61	Chemically-resolved aerosol volatility measurements from two megacity field studies. Atmospheric Chemistry and Physics, 2009, 9, 7161-7182.	1.9	289
62	Air quality in North America's most populous city $\hat{a} \in \text{``overview of the MCMA-2003 campaign.}$ Atmospheric Chemistry and Physics, 2007, 7, 2447-2473.	1.9	286
63	Evolution of brown carbon in wildfire plumes. Geophysical Research Letters, 2015, 42, 4623-4630.	1.5	284
64	Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1). Environmental Science & Enviro	4.6	273
65	Loading-dependent elemental composition of \hat{l}_{\pm} -pinene SOA particles. Atmospheric Chemistry and Physics, 2009, 9, 771-782.	1.9	272
66	Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1516-1521.	3.3	269
67	Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmospheric Chemistry and Physics, 2011, 11, 1989-2013.	1.9	266
68	Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection, 2021, 110, 89-96.	1.4	264
69	Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City. Atmospheric Chemistry and Physics, 2009, 9, 5681-5709.	1.9	261
70	Insights into the Chemistry of New Particle Formation and Growth Events in Pittsburgh Based on Aerosol Mass Spectrometry. Environmental Science & Environmental Science & 2004, 38, 4797-4809.	4.6	259
71	Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada. Atmospheric Chemistry and Physics, 2008, 8, 2999-3014.	1.9	259
72	Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1955-1977.	1.2	259

#	Article	IF	CITATIONS
73	Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO ₂ emission controls. Atmospheric Chemistry and Physics, 2016, 16, 1603-1618.	1.9	257
74	Oxygenated and water-soluble organic aerosols in Tokyo. Journal of Geophysical Research, 2007, 112, .	3.3	256
75	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmospheric Chemistry and Physics, 2011, 11, 12673-12696.	1.9	240
76	Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations. Atmospheric Chemistry and Physics, 2010, 10, 9739-9760.	1.9	234
77	Quantitative estimates of the volatility of ambient organic aerosol. Atmospheric Chemistry and Physics, 2010, 10, 5409-5424.	1.9	233
78	Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmospheric Chemistry and Physics, 2018, 18, 3299-3319.	1.9	233
79	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.	1.2	231
80	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of Geophysical Research, 2009, 114 , .	3.3	230
81	Modeling organic aerosols in a megacity: comparison of simple and complex representations of the volatility basis set approach. Atmospheric Chemistry and Physics, 2011, 11, 6639-6662.	1.9	230
82	Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes. Journal of Geophysical Research, 2005, 110 , .	3.3	229
83	Chemistry of hydrogen oxide radicals (HO _x) in the Arctic troposphere in spring. Atmospheric Chemistry and Physics, 2010, 10, 5823-5838.	1.9	220
84	Formation of Nitrogen-Containing Oligomers by Methylglyoxal and Amines in Simulated Evaporating Cloud Droplets. Environmental Science & Environmental	4.6	220
85	Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3. Atmospheric Chemistry and Physics, 2013, 13, 11551-11571.	1.9	218
86	Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. Atmospheric Chemistry and Physics, 2015, 15, 10411-10433.	1.9	217
87	Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime. Atmospheric Chemistry and Physics, 2016, 16, 7917-7941.	1.9	216
88	Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmospheric Chemistry and Physics, 2016, 16, 4785-4797.	1.9	213
89	Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 2: Application to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio. Aerosol Science and Technology, 2004, 38, 1206-1222.	1.5	212
90	Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophysical Research Letters, 2015, 42, 653-664.	1.5	212

#	Article	IF	Citations
91	Secondary Organic Aerosol-Forming Reactions of Glyoxal with Amino Acids. Environmental Science & Envir	4.6	206
92	The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmospheric Chemistry and Physics, 2010, 10, 7267-7283.	1.9	206
93	Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008. Journal of Geophysical Research, $2011,116,.$	3.3	206
94	Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring. Atmospheric Environment, 2011, 45, 7301-7318.	1.9	206
95	Organic haze on Titan and the early Earth. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18035-18042.	3.3	205
96	Development and Characterization of a Fast-Stepping/Scanning Thermodenuder for Chemically-Resolved Aerosol Volatility Measurements. Aerosol Science and Technology, 2008, 42, 395-407.	1.5	201
97	Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources. Environmental Science & Environmental S	4.6	201
98	New particle formation from photooxidation of diiodomethane (CH2I2). Journal of Geophysical Research, 2003, 108, .	3.3	200
99	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
100	Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2005, 39, 1143-1163.	1.5	196
101	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	6.0	192
102	On the implications of aerosol liquid water and phase separation for organic aerosol mass. Atmospheric Chemistry and Physics, 2017, 17, 343-369.	1.9	189
103	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2038-2043.	3.3	186
104	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	1.9	185
105	Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.	1.2	184
106	Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (TO) â€" Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction. Atmospheric Chemistry and Physics, 2010, 10, 5315-5341.	1.9	182
107	Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol. Geophysical Research Letters, 2016, 43, 7735-7744.	1.5	182
108	Exhaled CO ₂ as a COVID-19 Infection Risk Proxy for Different Indoor Environments and Activities. Environmental Science and Technology Letters, 2021, 8, 392-397.	3.9	180

#	Article	IF	CITATIONS
109	Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with Other Aerosol Instruments. Aerosol Science and Technology, 2005, 39, 760-770.	1.5	179
110	Gasâ€particle partitioning of primary organic aerosol emissions: 3. Biomass burning. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,327.	1.2	178
111	Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ. Environmental Science & Enp; Technology, 2016, 50, 5757-5765.	4.6	178
112	Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research D: Atmospheres, 2016, 121, 10,355.	1.2	176
113	Secondary Organic Aerosol Formation by Self-Reactions of Methylglyoxal and Glyoxal in Evaporating Droplets. Environmental Science & Environmental Scie	4.6	174
114	Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC ⁴ RS) and ground-based (SOAS) observations in the Southeast US. Atmospheric Chemistry and Physics, 2016, 16, 5969-5991.	1.9	173
115	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	4.6	172
116	The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties. Atmospheric Chemistry and Physics, 2008, 8, 5649-5667.	1.9	171
117	Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. Geophysical Research Letters, 2009, 36, .	1.5	171
118	Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 7257-7287.	1.9	170
119	An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438.	1.9	170
120	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 2017, 10, 486-489.	5.4	168
121	Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmospheric Chemistry and Physics, 2017, 17, 5703-5719.	1.9	168
122	Detection of particle-phase polycyclic aromatic hydrocarbons in Mexico City using an aerosol mass spectrometer. International Journal of Mass Spectrometry, 2007, 263, 152-170.	0.7	167
123	Quantitative sampling using an Aerodyne aerosol mass spectrometer 2. Measurements of fine particulate chemical composition in two U.K. cities. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	166
124	Simulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model. Atmospheric Chemistry and Physics, 2014, 14, 6213-6239.	1.9	166
125	The Deep Convective Clouds and Chemistry (DC3) Field Campaign. Bulletin of the American Meteorological Society, 2015, 96, 1281-1309.	1.7	165
126	Correlation of secondary organic aerosol with odd oxygen in Mexico City. Geophysical Research Letters, 2008, 35, .	1.5	161

#	Article	IF	CITATIONS
127	Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics. Journal of Geophysical Research, 2007, 112, .	3.3	159
128	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.	1.9	157
129	Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of Laboratory Open Burning of Wildland Fuels. Aerosol Science and Technology, 2010, 44, i-v.	1.5	156
130	Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest. Atmospheric Chemistry and Physics, 2011, 11, 1039-1050.	1.9	152
131	Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City. Atmospheric Chemistry and Physics, 2006, 6, 1733-1745.	1.9	151
132	Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2013, 13, 8585-8605.	1.9	150
133	Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2006, 111, .	3.3	149
134	Atmospheric condensedâ€phase reactions of glyoxal with methylamine. Geophysical Research Letters, 2009, 36, .	1.5	147
135	Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmospheric Chemistry and Physics, 2013, 13, 10095-10112.	1.9	145
136	Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens–Nozzle System. Aerosol Science and Technology, 2004, 38, 619-638.	1.5	143
137	Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA. Environmental Science & Eamp; Technology, 2016, 50, 2200-2209.	4.6	141
138	Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environmental Sciences: Processes and Impacts, 2019, 21, 1280-1300.	1.7	140
139	Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmospheric Chemistry and Physics, 2015, 15, 5773-5801.	1.9	139
140	Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6191-6215.	1.9	138
141	Biomass burning and urban air pollution over the Central Mexican Plateau. Atmospheric Chemistry and Physics, 2009, 9, 4929-4944.	1.9	138
142	Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics, 2016, 16, 7411-7433.	1.9	137
143	A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 2019, 574, 399-403.	13.7	135
144	Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmospheric Environment, 2003, 37, 1393-1400.	1.9	134

#	Article	IF	CITATIONS
145	Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Scientific Reports, 2017, 7, 4926.	1.6	133
146	The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US. Atmospheric Chemistry and Physics, 2015, 15, 1-18.	1.9	132
147	Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions. Atmospheric Environment, 2010, 44, 4553-4564.	1.9	131
148	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. Atmospheric Chemistry and Physics, 2011, 11, 12387-12420.	1.9	129
149	Organosulfates as Tracers for Secondary Organic Aerosol (SOA) Formation from 2-Methyl-3-Buten-2-ol (MBO) in the Atmosphere. Environmental Science & En	4.6	128
150	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	1.7	128
151	Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	127
152	Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution. Atmospheric Chemistry and Physics, 2011, 11, 2399-2421.	1.9	127
153	Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation. Journal of Physical Chemistry A, 2015, 119, 4418-4432.	1.1	126
154	CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations. Atmospheric Chemistry and Physics, 2010, 10, 4795-4807.	1.9	124
155	Organic nitrate aerosol formation via NO ₃ + biogenic volatile organic compounds in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 13377-13392.	1.9	124
156	Global transformation and fate of SOA: Implications of lowâ€volatility SOA and gasâ€phase fragmentation reactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4169-4195.	1.2	123
157	Design and Operation of a Pressure-Controlled Inlet for Airborne Sampling with an Aerodynamic Aerosol Lens. Aerosol Science and Technology, 2008, 42, 465-471.	1.5	122
158	In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. Atmospheric Chemistry and Physics, 2016, 16, 2943-2970.	1.9	122
159	Liquid Water: Ubiquitous Contributor to Aerosol Mass. Environmental Science and Technology Letters, 2016, 3, 257-263.	3.9	121
160	Exploring the observational constraints on the simulation of brown carbon. Atmospheric Chemistry and Physics, 2018, 18, 635-653.	1.9	121
161	Prediction of cloud condensation nucleus number concentration using measurements of aerosol size distributions and composition and light scattering enhancement due to humidity. Journal of Geophysical Research, 2007, 112, .	3.3	119
162	Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols. Atmospheric Chemistry and Physics, 2009, 9, 6949-6981.	1.9	119

#	Article	IF	CITATIONS
163	Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer. Atmospheric Chemistry and Physics, 2009, 9, 8949-8966.	1.9	119
164	Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models. Geoscientific Model Development, 2011, 4, 901-917.	1.3	119
165	HO _x radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling. Atmospheric Measurement Techniques, 2015, 8, 4863-4890.	1.2	118
166	Chemical feedbacks weaken the wintertime response of particulate sulfate and nitrate to emissions reductions over the eastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8110-8115.	3.3	118
167	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	3.3	118
168	Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008. Atmospheric Chemistry and Physics, 2013, 13, 2735-2756.	1.9	117
169	Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling. Atmospheric Chemistry and Physics, 2016, 16, 4283-4305.	1.9	117
170	Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species. Environmental Science & Emp; Technology, 2017, 51, 8491-8500.	4.6	117
171	Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environmental Science & Environmenta	4.6	116
172	Major components of atmospheric organic aerosol in southern California as determined by hourly measurements of source marker compounds. Atmospheric Chemistry and Physics, 2010, 10, 11577-11603.	1.9	114
173	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Emp; Technology, 2013, 47, 11403-11413.	4.6	113
174	Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties. Environmental Science & Envi	4.6	111
175	Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	109
176	Characterization of organic ambient aerosol during MIRAGE 2006 on three platforms. Atmospheric Chemistry and Physics, 2009, 9, 5417-5432.	1.9	109
177	Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions. Environmental Science & Environm	4.6	109
178	Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics, 2017, 17, 11107-11133.	1.9	109
179	Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks. Environmental Science & Environmental Scienc	4.6	109
180	Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	107

#	Article	IF	CITATIONS
181	An Eddy-Covariance System for the Measurement of Surface/Atmosphere Exchange Fluxes of Submicron Aerosol Chemical Species—First Application Above an Urban Area. Aerosol Science and Technology, 2008, 42, 636-657.	1.5	107
182	Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. Atmospheric Chemistry and Physics, 2010, 10, 8947-8968.	1.9	107
183	Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 13325-13337.	1.9	106
184	Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.	1.9	105
185	Heterogeneous N ₂ O ₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4345-4372.	1.2	103
186	Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds. Atmospheric Measurement Techniques, 2017, 10, 4687-4696.	1.2	100
187	Observations of heterogeneous reactions between Asian pollution and mineral dust over the Eastern North Pacific during INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 8283-8308.	1.9	99
188	The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. Journal of Geophysical Research, 2011, 116, .	3.3	99
189	A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species. Aerosol Science and Technology, 2012, 46, 1313-1327.	1.5	99
190	Characterization of a thermodenuder-particle beam mass spectrometer system for the study of organic aerosol volatility and composition. Atmospheric Measurement Techniques, 2009, 2, 15-31.	1.2	98
191	Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 7841-7858.	1.9	96
192	Airborne measurements of organosulfates over the continental U.S Journal of Geophysical Research D: Atmospheres, 2015, 120, 2990-3005.	1.2	96
193	Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS. Atmospheric Chemistry and Physics, 2016, 16, 4081-4100.	1.9	95
194	Total observed organic carbon (TOOC) in the atmosphere: a synthesis of North American observations. Atmospheric Chemistry and Physics, 2008, 8, 2007-2025.	1.9	94
195	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	1.2	93
196	Chemical speciation of organic aerosol during the International Consortium for Atmospheric Research on Transport and Transformation 2004: Results from in situ measurements. Journal of Geophysical Research, 2007, 112 , .	3.3	92
197	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899.	1.9	92
198	Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, .	3.3	91

#	Article	IF	Citations
199	Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air, 2016, 26, 925-938.	2.0	91
200	A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. Journal of Geophysical Research, 2003, 108, .	3.3	90
201	Modeling the Multiday Evolution and Aging of Secondary Organic Aerosol During MILAGRO 2006. Environmental Science & Environmen	4.6	90
202	An evaluation of global organic aerosol schemes using airborne observations. Atmospheric Chemistry and Physics, 2020, 20, 2637-2665.	1.9	90
203	Semicontinuous measurements of gas–particle partitioning of organic acids in a ponderosa pine forest using a MOVI-HRToF-CIMS. Atmospheric Chemistry and Physics, 2014, 14, 1527-1546.	1.9	89
204	Time-Resolved Measurements of Indoor Chemical Emissions, Deposition, and Reactions in a University Art Museum. Environmental Science & Environmental S	4.6	89
205	Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08). Atmospheric Chemistry and Physics, 2015, 15, 3687-3701.	1.9	88
206	Inorganic Salt Interference on CO ₂ ⁺ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environmental Science & Enviro	4.6	88
207	Aerosol optical properties in the southeastern United States in summer – PartÂ1: Hygroscopic growth. Atmospheric Chemistry and Physics, 2016, 16, 4987-5007.	1.9	88
208	Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2). Journal of Advances in Modeling Earth Systems, 2019, 11, 4323-4351.	1.3	87
209	The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. Atmospheric Chemistry and Physics, 2019, 19, 3137-3160.	1.9	86
210	Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. Geophysical Research Letters, 2015, 42, 4182-4189.	1.5	84
211	How did we get here: what are droplets and aerosols and how far do they go? A historical perspective on the transmission of respiratory infectious diseases. Interface Focus, 2021, 11, 20210049.	1.5	84
212	Measurements of HNO ₃ and N ₂ using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign. Atmospheric Chemistry and Physics, 2008, 8, 6823-6838.	1.9	83
213	Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign. Atmospheric Chemistry and Physics, 2009, 9, 3721-3730.	1.9	83
214	Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation. Atmospheric Chemistry and Physics, 2014, 14, 2383-2397.	1.9	83
215	Impact of Mexico City emissions on regional air quality from MOZART-4 simulations. Atmospheric Chemistry and Physics, 2010, 10, 6195-6212.	1.9	82
216	Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6818-6835.	1.2	82

#	Article	lF	Citations
217	Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA). Atmospheric Chemistry and Physics, 2016, 16, 11563-11580.	1.9	82
218	Cloud Activating Properties of Aerosol Observed during CELTIC. Journals of the Atmospheric Sciences, 2007, 64, 441-459.	0.6	81
219	Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California. Atmospheric Chemistry and Physics, 2011, 11, 10219-10241.	1.9	81
220	Remote Sensing of NO and NO2Emissions from Heavy-Duty Diesel Trucks Using Tunable Diode Lasers. Environmental Science & Enviro	4.6	80
221	Kinetics of submicron oleic acid aerosols with ozone: A novel aerosol mass spectrometric technique. Geophysical Research Letters, 2002, 29, 71-1-71-4.	1.5	80
222	Can 3-D models explain the observed fractions of fossil and non-fossil carbon in and near Mexico City?. Atmospheric Chemistry and Physics, 2010, 10, 10997-11016.	1.9	80
223	Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees,) Tj ETQq1 :	1 0.78431 1.9	4 rgBT /Over
224	A tunable diode laser system for the remote sensing of on-road vehicle emissions. Applied Physics B: Lasers and Optics, 1998, 67, 433-441.	1.1	79
225	Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART. Geoscientific Model Development, 2011, 4, 1077-1102.	1.3	78
226	Methods to extract molecular and bulk chemical information from series of complex mass spectra with limited mass resolution. International Journal of Mass Spectrometry, 2015, 389, 26-38.	0.7	78
227	Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing. Geophysical Research Letters, 2014, 41, 7701-7709.	1.5	77
228	Aerosol optical properties relevant to regional remote sensing of CCN activity and links to their organic mass fraction: airborne observations over Central Mexico and the US West Coast during MILAGRO/INTEX-B. Atmospheric Chemistry and Physics, 2009, 9, 6727-6742.	1.9	76
229	Observations of total RONO ₂ over the boreal forest: NO _x sinks and HNO ₃ sources. Atmospheric Chemistry and Physics, 2013, 13, 4543-4562.	1.9	76
230	Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon. Atmospheric Environment, 2014, 87, 34-40.	1.9	76
231	Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime. Atmospheric Chemistry and Physics, 2015, 15, 9253-9269.	1.9	74
232	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	1.5	74
233	Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS ARB 2008. Journal of Geophysical Research, 2012, 117, .	3.3	73
234	Droplet activation properties of organic aerosols observed at an urban site during CalNex‣A. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2903-2917.	1.2	73

#	Article	IF	CITATIONS
235	Revealing important nocturnal and dayâ€toâ€day variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters, 2015, 42, 3609-3618.	1.5	73
236	Impact of palmitic acid coating on the water uptake and loss of ammonium sulfate particles. Atmospheric Chemistry and Physics, 2005, 5, 1951-1961.	1.9	71
237	CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, 2017, 17, 11779-11801.	1.9	71
238	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7771-7796.	1.2	71
239	Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns. Atmospheric Chemistry and Physics, 2011, 11, 7561-7582.	1.9	70
240	Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. CheM, 2020, 6, 3203-3218.	5.8	70
241	Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6783-6796.	1.2	69
242	Secondary organic aerosol formation from semi―and intermediateâ€volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry. Geophysical Research Letters, 2013, 40, 978-982.	1.5	69
243	Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation. Environmental Science & Emp; Technology, 2016, 50, 9952-9962.	4.6	69
244	Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5 km during the SEAC ⁴ RS campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4188-4210.	1.2	67
245	How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmospheric Chemistry and Physics, 2020, 20, 2073-2097.	1.9	67
246	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	5.4	66
247	Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, 4607-4635.	1.9	66
248	Heterogeneous formation of nitryl chloride and its role as a nocturnal NO <i>_x</i> reservoir species during CalNex‣A 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,638.	1.2	65
249	lon mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of atmospheric gas and aerosol species. Atmospheric Measurement Techniques, 2016, 9, 3245-3262.	1.2	64
250	Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 11163-11176.	1.9	64
251	Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions. Atmospheric Measurement Techniques, 2019, 12, 3453-3461.	1.2	64
252	Real-time aerosol mass spectrometry with millisecond resolution. International Journal of Mass Spectrometry, 2011, 303, 15-26.	0.7	63

#	Article	IF	Citations
253	Evaluation of the new capture vaporizer for aerosol mass spectrometers (AMS) through field studies of inorganic species. Aerosol Science and Technology, 2017, 51, 735-754.	1.5	63
254	Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.	1.9	63
255	Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric Chemistry and Physics, 2014, 14, 10013-10060.	1.9	62
256	Size-resolved aerosol composition and its link to hygroscopicity at a forested site in Colorado. Atmospheric Chemistry and Physics, 2014, 14, 2657-2667.	1.9	62
257	Overview of the Manitou Experimental Forest Observatory: site description and selected science results from 2008 to 2013. Atmospheric Chemistry and Physics, 2014, 14, 6345-6367.	1.9	62
258	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. Bulletin of the American Meteorological Society, 2018, 99, 547-567.	1.7	62
259	Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chemical Society Reviews, 2020, 49, 2570-2616.	18.7	62
260	Quantitative detection of iodine in the stratosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1860-1866.	3.3	61
261	Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality. Atmospheric Chemistry and Physics, 2021, 21, 11201-11224.	1.9	60
262	Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmospheric Chemistry and Physics, 2011, 11, 11415-11429.	1.9	59
263	Gas-Phase Carboxylic Acids in a University Classroom: Abundance, Variability, and Sources. Environmental Science & Environment	4.6	59
264	Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products. Atmospheric Measurement Techniques, 2019, 12, 3081-3099.	1.2	59
265	Functional Group Composition of Secondary Organic Aerosol Formed from Ozonolysis of α-Pinene Under High VOC and Autoxidation Conditions. ACS Earth and Space Chemistry, 2018, 2, 1196-1210.	1.2	58
266	Technical Note: Use of a beam width probe in an Aerosol Mass Spectrometer to monitor particle collection efficiency in the field. Atmospheric Chemistry and Physics, 2007, 7, 549-556.	1.9	57
267	Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region. Atmospheric Chemistry and Physics, 2015, 15, 1975-1993.	1.9	57
268	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model $\hat{a} \in \text{``Part 2: Assessing the influence of vapor wall losses. Atmospheric Chemistry and Physics, 2016, 16, 3041-3059.}$	1.9	57
269	Secondary organic aerosol formation from in situ OH, O ₃ , and NO ₃ oxidation of ambient forest air in an oxidation flow reactor. Atmospheric Chemistry and Physics, 2017, 17, 5331-5354.	1.9	57
270	Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products. Atmospheric Environment, 2006, 40, 6863-6878.	1.9	56

#	Article	IF	CITATIONS
271	Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8448-8468.	1.2	56
272	Ambient Measurements of Highly Oxidized Gas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013. ACS Earth and Space Chemistry, 2018, 2, 653-672.	1.2	56
273	The characterisation of pollution aerosol in a changing photochemical environment. Atmospheric Chemistry and Physics, 2006, 6, 5573-5588.	1.9	55
274	A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 6209-6239.	1.2	55
275	Nitrogen Incorporation in CH ₄ -N ₂ Photochemical Aerosol Produced by Far Ultraviolet Irradiation. Astrobiology, 2012, 12, 315-326.	1.5	54
276	On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk waterâ€soluble organic carbon. Journal of Geophysical Research, 2012, 117, .	3.3	53
277	Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra. Atmospheric Measurement Techniques, 2015, 8, 2333-2345.	1.2	53
278	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	1.9	53
279	Reduction in Haze Formation Rate on Prebiotic Earth in the Presence of Hydrogen. Astrobiology, 2009, 9, 447-453.	1.5	52
280	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.	1.7	52
281	Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.	1.9	52
282	Inconsistency of ammonium–sulfate aerosol ratios with thermodynamic models in the eastern US: a possible role of organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 5107-5118.	1.9	52
283	NO _{x} Lifetime and NO _{y} Partitioning During WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9813-9827.	1.2	52
284	Impact of Trash Burning on Air Quality in Mexico City. Environmental Science & Emp; Technology, 2012, 46, 4950-4957.	4.6	51
285	Evaluation of the new capture vapourizer for aerosol mass spectrometers (AMS) through laboratory studies of inorganic species. Atmospheric Measurement Techniques, 2017, 10, 2897-2921.	1.2	51
286	Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
287	Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol Mass Spectrometer. Aerosol Science and Technology, 2007, 41, 828-839.	1.5	50
288	Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B. Atmospheric Chemistry and Physics, 2010, 10, 6627-6644.	1.9	50

#	Article	IF	CITATIONS
289	Collection Efficiency of the Aerosol Mass Spectrometer for Chamber-Generated Secondary Organic Aerosols. Aerosol Science and Technology, 2013, 47, 294-309.	1.5	50
290	In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC ⁴ RS: observations of a modest aerosol enhancement aloft. Atmospheric Chemistry and Physics, 2015, 15, 7085-7102.	1.9	50
291	Effects of sources and meteorology on particulate matter in the Western Mediterranean Basin: An overview of the DAURE campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4978-5010.	1.2	49
292	Laboratory evaluation of species-dependent relative ionization efficiencies in the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2018, 52, 626-641.	1.5	49
293	Nitrogen Oxides Emissions, Chemistry, Deposition, and Export Over the Northeast United States During the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,368.	1.2	49
294	Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2006, 111, .	3.3	48
295	Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations. Atmospheric Chemistry and Physics, 2010, 10, 5371-5389.	1.9	48
296	Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield. Atmospheric Chemistry and Physics, 2015, 15, 5243-5258.	1.9	48
297	Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions. Atmospheric Environment, 2012, 61, 482-489.	1.9	47
298	On the gasâ€particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid. Journal of Geophysical Research, 2012, 117, .	3.3	47
299	Aerosol optical properties at Pasadena, CA during CalNex 2010. Atmospheric Environment, 2012, 55, 190-200.	1.9	47
300	The First Combined Thermal Desorption Aerosol Gas Chromatograph—Aerosol Mass Spectrometer (TAG-AMS). Aerosol Science and Technology, 2014, 48, 358-370.	1.5	47
301	Evaluation of European air quality modelled by CAMx including the volatility basis set scheme. Atmospheric Chemistry and Physics, 2016, 16, 10313-10332.	1.9	47
302	Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data. Science of the Total Environment, 2018, 637-638, 1137-1149.	3.9	47
303	Secondary organic aerosol (SOA) yields from NO ₃ radical + isoprene based on nighttime aircraft power plant plume transects. Atmospheric Chemistry and Physics, 2018, 18, 11663-11682.	1.9	47
304	Predictions of the glass transition temperature and viscosity of organic aerosols from volatility distributions. Atmospheric Chemistry and Physics, 2020, 20, 8103-8122.	1.9	47
305	In situ concentration of semi-volatile aerosol using water-condensation technology. Journal of Aerosol Science, 2005, 36, 866-880.	1.8	45
306	Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.	1.9	45

#	Article	IF	CITATIONS
307	Effects of gas–wall interactions on measurements of semivolatile compounds and small polar molecules. Atmospheric Measurement Techniques, 2019, 12, 3137-3149.	1.2	45
308	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	4.7	45
309	Aerosol optical properties in the southeastern United States in summer – PartÂ2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters. Atmospheric Chemistry and Physics, 2016, 16, 5009-5019.	1.9	44
310	Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers. Environmental Science & Environmental	4.6	44
311	Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ. Elementa, 2020, 8, .	1.1	44
312	A regional scale modeling analysis of aerosol and trace gas distributions over the eastern Pacific during the INTEX-B field campaign. Atmospheric Chemistry and Physics, 2010, 10, 2091-2115.	1.9	43
313	Observation and Control of Shock Waves in Individual Nanoplasmas. Physical Review Letters, 2014, 112, 115004.	2.9	43
314	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. Geophysical Research Letters, 2015, 42, 6084-6090.	1.5	43
315	Characterization of On-Road Vehicle NO Emissions by a TILDAS Remote Sensor. Journal of the Air and Waste Management Association, 1999, 49, 463-470.	0.9	42
316	Emission, oxidation, and secondary organic aerosol formation of volatile organic compounds as observed at Chebogue Point, Nova Scotia. Journal of Geophysical Research, 2007, 112 , .	3.3	42
317	Secondary Organic Aerosol Formation via 2-Methyl-3-buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides. Environmental Science and Technology Letters, 2014, 1, 242-247.	3.9	42
318	Direct measurements of semi-volatile organic compound dynamics show near-unity mass accommodation coefficients for diverse aerosols. Communications Chemistry, 2019, 2, .	2.0	42
319	Photochemical modeling of glyoxal at a rural site: observations and analysis from BEARPEX 2007. Atmospheric Chemistry and Physics, 2011, 11, 8883-8897.	1.9	41
320	Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 10505-10518.	1.9	41
321	Atmospheric Acetaldehyde: Importance of Airâ€6ea Exchange and a Missing Source in the Remote Troposphere. Geophysical Research Letters, 2019, 46, 5601-5613.	1.5	41
322	KinSim: A Research-Grade, User-Friendly, Visual Kinetics Simulator for Chemical-Kinetics and Environmental-Chemistry Teaching. Journal of Chemical Education, 2019, 96, 806-811.	1.1	41
323	Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements. Environmental Science & Emp; Technology, 2019, 53, 5176-5186.	4.6	41
324	Photoelectron Spectroscopy of CdSe Nanocrystals in the Gas Phase: A Direct Measure of the Evanescent Electron Wave Function of Quantum Dots. Nano Letters, 2013, 13, 2924-2930.	4.5	40

#	Article	IF	Citations
325	Organosulfates in aerosols downwind of an urban region in central Amazon. Environmental Sciences: Processes and Impacts, 2018, 20, 1546-1558.	1.7	40
326	Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes. Atmospheric Measurement Techniques, 2011, 4, 1275-1289.	1.2	39
327	Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City. Atmospheric Measurement Techniques, 2012, 5, 195-224.	1.2	39
328	Comment on "The effects of molecular weight and thermal decomposition on the sensitivity of a thermal desorption aerosol mass spectrometer― Aerosol Science and Technology, 2016, 50, i-xv.	1.5	39
329	Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013. Aerosol Science and Technology, 2017, 51, 30-56.	1.5	39
330	Flight Deployment of a Highâ€Resolution Timeâ€ofâ€Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7670-7686.	1.2	39
331	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	1.7	39
332	Laboratory Studies on Secondary Organic Aerosol Formation from Crude Oil Vapors. Environmental Science & Environmental Science	4.6	38
333	Cross road and mobile tunable infrared laser measurements of nitrous oxide emissions from motor vehicles. Chemosphere, 2000, 2, 397-412.	1.2	37
334	Budgets of Organic Carbon Composition and Oxidation in Indoor Air. Environmental Science & Environmental Science & Technology, 2019, 53, 13053-13063.	4.6	37
335	Comparative Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis (PESA), and Aerosol Mass Spectrometry (AMS). Environmental Science & Echnology, 2008, 42, 6619-6624.	4.6	36
336	Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study. Atmospheric Chemistry and Physics, 2013, 13, 10125-10141.	1.9	36
337	Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA. Atmospheric Chemistry and Physics, 2017, 17, 9237-9259.	1.9	36
338	Southeast Atmosphere Studies: learning from model-observation syntheses. Atmospheric Chemistry and Physics, 2018, 18, 2615-2651.	1.9	36
339	Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.	1.9	36
340	Submicron particles at Thompson Farm during ICARTT measured using aerosol mass spectrometry. Journal of Geophysical Research, 2008, 113 , .	3.3	35
341	Mixing times of organic molecules within secondary organic aerosol particles: aÂglobal planetary boundary layer perspective. Atmospheric Chemistry and Physics, 2017, 17, 13037-13048.	1.9	35
342	Modeling of the chemistry in oxidation flow reactors with high initial NO. Atmospheric Chemistry and Physics, 2017, 17, 11991-12010.	1.9	35

#	Article	IF	CITATIONS
343	Putting a balance on the aerosolization debate around SARS-CoV-2. Journal of Hospital Infection, 2020, 105, 569-570.	1.4	35
344	Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign – PartÂll: Model application to the CENICA, Pedregal and Santa Ana sites. Atmospheric Chemistry and Physics, 2006, 6, 4889-4904.	1.9	34
345	Real-time Atmospheric Chemistry Field Instrumentation. Analytical Chemistry, 2010, 82, 7879-7884.	3.2	34
346	The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission. Atmospheric Measurement Techniques, 2021, 14, 3631-3655.	1.2	34
347	Airborne Observations of Reactive Inorganic Chlorine and Bromine Species in the Exhaust of Coalâ€Fired Power Plants. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11225-11237.	1.2	33
348	Exploring dimethyl sulfide (DMS) oxidation and implications for global aerosol radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 1549-1573.	1.9	33
349	Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic. Atmospheric Chemistry and Physics, 2016, 16, 715-738.	1.9	32
350	Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance. Atmospheric Chemistry and Physics, 2019, 19, 813-834.	1.9	32
351	Quantification and source characterization of volatile organic compounds from exercising and application of chlorineâ€based cleaning products in a university athletic center. Indoor Air, 2021, 31, 1323-1339.	2.0	32
352	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth $\&$ Environment, 2021, 2, .	2.6	32
353	ClNO ₂ Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization. Journal of Geophysical Research D: Atmospheres, 2018, 12,994.	1.2	31
354	An in situ gas chromatograph with automatic detector switching between PTR- and EI-TOF-MS: isomer-resolved measurements of indoor air. Atmospheric Measurement Techniques, 2021, 14, 133-152.	1.2	31
355	Chemical composition of Titan's haze: Are PAHs present?. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	30
356	Mapping Nanoscale Absorption of Femtosecond Laser Pulses Using Plasma Explosion Imaging. ACS Nano, 2014, 8, 8810-8818.	7.3	30
357	Is there an aerosol signature of chemical cloud processing?. Atmospheric Chemistry and Physics, 2018, 18, 16099-16119.	1.9	30
358	Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.	1.9	30
359	Biomass Burning Markers and Residential Burning in the WINTER Aircraft Campaign. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1846-1861.	1.2	30
360	Chemical and physical processes controlling the distribution of aerosols in the Lower Fraser Valley, Canada, during the Pacific 2001 field campaign. Atmospheric Environment, 2004, 38, 5759-5774.	1.9	29

#	Article	IF	Citations
361	The Formation of Sulfate and Elemental Sulfur Aerosols under Varying Laboratory Conditions: Implications for Early Earth. Astrobiology, 2010, 10, 773-781.	1.5	29
362	Solvents Effects on Charge Transfer from Quantum Dots. Journal of the American Chemical Society, 2015, 137, 3759-3762.	6.6	29
363	Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol. Astrobiology, 2016, 16, 822-830.	1.5	29
364	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 3: Assessing the influence of semi-volatile and intermediate-volatility organic compounds and NO _{<i>x</i>} . Atmospheric Chemistry and Physics, 2019, 19, 4561-4594.	1.9	29
365	Realâ€time organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. Indoor Air, 2021, 31, 141-155.	2.0	29
366	Technical Note: Description and Use of the New Jump Mass Spectrum Mode of Operation for the Aerodyne Quadrupole Aerosol Mass Spectrometers (Q-AMS). Aerosol Science and Technology, 2007, 41, 865-872.	1.5	28
367	Feasibility of the Detection of Trace Elements in Particulate Matter Using Online High-Resolution Aerosol Mass Spectrometry. Aerosol Science and Technology, 2012, 46, 1187-1200.	1.5	28
368	Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011. Atmospheric Chemistry and Physics, 2016, 16, 1187-1205.	1.9	28
369	Anthropogenic Control Over Wintertime Oxidation of Atmospheric Pollutants. Geophysical Research Letters, 2019, 46, 14826-14835.	1.5	28
370	Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index. Atmospheric Measurement Techniques, 2021, 14, 4517-4542.	1.2	28
371	Combined effects of surface conditions, boundary layer dynamics and chemistry on diurnal SOA evolution. Atmospheric Chemistry and Physics, 2012, 12, 6827-6843.	1.9	27
372	Chemically Resolved Particle Fluxes Over Tropical and Temperate Forests. Aerosol Science and Technology, 2013, 47, 818-830.	1.5	27
373	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	1.9	27
374	An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands. Atmospheric Chemistry and Physics, 2014, 14, 5073-5087.	1.9	27
375	Measurements and modeling of absorptive partitioning of volatile organic compounds to painted surfaces. Indoor Air, 2020, 30, 745-756.	2.0	27
376	Wintertime Aerosol Chemistry in Sub-Arctic Urban Air. Aerosol Science and Technology, 2014, 48, 313-323.	1.5	26
377	Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity. Atmospheric Environment, 2016, 128, 28-44.	1.9	26
378	Model Evaluation of New Techniques for Maintaining High-NO Conditions in Oxidation Flow Reactors for the Study of OH-Initiated Atmospheric Chemistry. ACS Earth and Space Chemistry, 2018, 2, 72-86.	1,2	26

#	Article	IF	Citations
379	Ambient observations of hygroscopic growth factor and $\langle i \rangle f \langle i \rangle$ (RH) below 1: Case studies from surface and airborne measurements. Journal of Geophysical Research D: Atmospheres, 2016, 121, 661-677.	1.2	25
380	Evaluation of the new capture vaporizer for aerosol mass spectrometers: Characterization of organic aerosol mass spectra. Aerosol Science and Technology, 2018, 52, 725-739.	1.5	25
381	An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol. Communications Chemistry, 2018, 1 , .	2.0	25
382	Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States. Geophysical Research Letters, 2019, 46, 2974-2983.	1.5	25
383	Correction to "New particle formation from photooxidation of diiodomethane (CH2I2)― Journal of Geophysical Research, 2003, 108, .	3.3	24
384	Impacts of Aerosol Aging on Laser Desorption/Ionization in Single-Particle Mass Spectrometers. Aerosol Science and Technology, 2014, 48, 1050-1058.	1.5	24
385	Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry, 2018, 2, 410-421.	1.2	24
386	Characterization of the Real Part of Dry Aerosol Refractive Index Over North America From the Surface to 12Âkm. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8283-8300.	1.2	24
387	Viscosities, diffusion coefficients, and mixing times of intrinsic fluorescent organic molecules in brown limonene secondary organic aerosol and tests of the Stokes–Einstein equation. Atmospheric Chemistry and Physics, 2019, 19, 1491-1503.	1.9	24
388	Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016. Atmospheric Chemistry and Physics, 2019, 19, 12779-12795.	1.9	24
389	Always Lost but Never Forgotten: Gas-Phase Wall Losses Are Important in All Teflon Environmental Chambers. Environmental Science & Environmental Scien	4.6	24
390	Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams. Journal of Physical Chemistry Letters, 2016, 7, 609-615.	2.1	23
391	Observational Constraints on the Oxidation of NOx in the Upper Troposphere. Journal of Physical Chemistry A, 2016, 120, 1468-1478.	1.1	23
392	Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period. Atmospheric Chemistry and Physics, 2011, 11, 3173-3194.	1.9	22
393	Accumulation-mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long-range transport of polluted and clean air from the Asian continent. Journal of Geophysical Research, 2011, 116, .	3.3	22
394	A novel framework for molecular characterization of atmospherically relevant organic compounds based on collision cross section and mass-to-charge ratio. Atmospheric Chemistry and Physics, 2016, 16, 12945-12959.	1.9	22
395	A simplified parameterization of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) for global chemistry and climate models: a case study with GEOS-Chem v11-02-rc. Geoscientific Model Development, 2019, 12, 2983-3000.	1.3	22
396	Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. Environmental Science & Environmental Sc	4.6	22

#	Article	IF	Citations
397	Halogens Enhance Haze Pollution in China. Environmental Science & Echnology, 2021, 55, 13625-13637.	4.6	22
398	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	1.9	22
399	In situ measurements of water uptake by black carbonâ€containing aerosol in wildfire plumes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1086-1097.	1.2	21
400	Wintertime Gasâ€Particle Partitioning and Speciation of Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,897.	1.2	21
401	Autoxidation of Limonene Emitted in a University Art Museum. Environmental Science and Technology Letters, 2019, 6, 520-524.	3.9	21
402	Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea. Atmospheric Environment, 2020, 224, 117305.	1.9	21
403	Oxidation Flow Reactor Results in a Chinese Megacity Emphasize the Important Contribution of S/IVOCs to Ambient SOA Formation. Environmental Science &	4.6	21
404	Characteristics and evolution of brown carbon in western United States wildfires. Atmospheric Chemistry and Physics, 2022, 22, 8009-8036.	1.9	21
405	Airborne measurements and emission estimates of greenhouse gases and other trace constituents from the 2013 California Yosemite Rim wildfire. Atmospheric Environment, 2016, 127, 293-302.	1.9	20
406	Performance of a new coaxial ion–molecule reaction region for low-pressure chemical ionization mass spectrometry with reduced instrument wall interactions. Atmospheric Measurement Techniques, 2019, 12, 5829-5844.	1.2	20
407	Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 1545-1559.	1.2	20
408	Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. Aerosol Science and Technology, 2021, 55, 1099-1114.	1.5	20
409	Quantifying Atmospheric Parameter Ranges for Ambient Secondary Organic Aerosol Formation. ACS Earth and Space Chemistry, 2021, 5, 2380-2397.	1.2	20
410	Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	20
411	Probing molecular associations of fieldâ€collected and laboratoryâ€generated SOA with nanoâ€DESI highâ€resolution mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1042-1051.	1.2	19
412	Observational Constraints on the Formation of Cl ₂ From the Reactive Uptake of ClNO ₂ on Aerosols in the Polluted Marine Boundary Layer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8851-8869.	1.2	19
413	Resolving Ambient Organic Aerosol Formation and Aging Pathways with Simultaneous Molecular Composition and Volatility Observations. ACS Earth and Space Chemistry, 2020, 4, 391-402.	1.2	19
414	Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,591.	1,2	18

#	Article	IF	CITATIONS
415	Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ. Atmospheric Chemistry and Physics, 2020, 20, 6455-6478.	1.9	18
416	Estimates of Regional Source Contributions to the Asian Tropopause Aerosol Layer Using a Chemical Transport Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031506.	1.2	18
417	Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM _{2.5}): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations. Atmospheric Chemistry and Physics, 2021, 21, 16775-16791.	1.9	18
418	Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 1. Techniques of data interpretation and error analysis― Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	17
419	Fluxes of Fine Particles Over a Semi-Arid Pine Forest: Possible Effects of a Complex Terrain. Aerosol Science and Technology, 2013, 47, 906-915.	1.5	17
420	Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.	1.9	17
421	How can ventilation be improved on public transportation buses? Insights from CO2 measurements. Environmental Research, 2022, 205, 112451.	3.7	17
422	Limitations in representation of physical processes prevent successful simulation of PM _{2.5} during KORUS-AQ. Atmospheric Chemistry and Physics, 2022, 22, 7933-7958.	1.9	17
423	A Variable Supersaturation Condensation Particle Sizer. Aerosol Science and Technology, 2006, 40, 431-436.	1.5	16
424	Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7079-7087.	1.2	16
425	Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency. Atmospheric Chemistry and Physics, 2021, 21, 3395-3425.	1.9	16
426	Large Emissions of Low-Volatility Siloxanes during Residential Oven Use. Environmental Science and Technology Letters, 2021, 8, 519-524.	3.9	16
427	Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1777-1803.	1.2	15
428	A Technique for Rapid Gas Chromatography Analysis Applied to Ambient Organic Aerosol Measurements from the Thermal Desorption Aerosol Gas Chromatograph (TAG). Aerosol Science and Technology, 2014, 48, 1166-1182.	1.5	15
429	Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance. Atmospheric Chemistry and Physics, 2019, 19, 2765-2785.	1.9	15
430	Contrasting Reactive Organic Carbon Observations in the Southeast United States (SOAS) and Southern California (CalNex). Environmental Science & Eamp; Technology, 2020, 54, 14923-14935.	4.6	15
431	Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements. Atmospheric Chemistry and Physics, 2021, 21, 15023-15063.	1.9	15
432	New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002266.	1.3	15

#	Article	IF	CITATIONS
433	A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 459-483.	1.2	15
434	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & Environmental Science & 2022, 56, 7564-7577.	4.6	15
435	Marine aerosols and iodine emissions (Reply). Nature, 2005, 433, E13-E14.	13.7	14
436	Chemically-resolved aerosol eddy covariance flux measurements in urban Mexico City during MILAGRO 2006. Atmospheric Chemistry and Physics, 2012, 12, 7809-7823.	1.9	14
437	Influence of boundary layer dynamics and isoprene chemistry on the organic aerosol budget in a tropical forest. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9351-9366.	1.2	14
438	Evaluation of the performance of a particle concentrator for online instrumentation. Atmospheric Measurement Techniques, 2014, 7, 2121-2135.	1.2	14
439	Long-term observational constraints of organic aerosol dependence on inorganic species in the southeast US. Atmospheric Chemistry and Physics, 2020, 20, 13091-13107. HO _{<l>x> and</l>}	1.9	14
440	NO _{<i>x</i>} production in oxidation flow reactors via photolysis of isopropyl nitrite, isopropyl nitrite-d ₇ , and 1,3-propyl dinitrite at <i>î×</i> = 254, 350, and 369 nm. Atmospheric Measurement Technic	1.2	13
441	299-311. HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations. ACS Earth and Space Chemistry, 2021, 5, 1436-1454.	1.2	13
442	Fine Ashâ∈Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
443	Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008. Atmospheric Chemistry and Physics, 2016, 16, 9435-9455.	1.9	12
444	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. Atmospheric Chemistry and Physics, 2018, 18, 12433-12460.	1.9	12
445	Rates of Wintertime Atmospheric SO ₂ Oxidation based on Aircraft Observations during Clearâ€Sky Conditions over the Eastern United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6630-6649.	1.2	12
446	Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements. Atmospheric Measurement Techniques, 2021, 14, 2237-2260.	1.2	12
447	Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. Atmospheric Measurement Techniques, 2016, 9, 1569-1586.	1.2	11
448	The optical and chemical properties of discharge generated organic haze using in-situ real-time techniques. Icarus, 2017, 294, 1-13.	1.1	11
449	Biogenic emissions and land–atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 2019, 19, 701-729.	1.9	11
450	EURODELTA III exercise: An evaluation of air quality models' capacity to reproduce the carbonaceous aerosol. Atmospheric Environment: X, 2019, 2, 100018.	0.8	11

#	Article	IF	CITATIONS
451	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Environment	4.6	11
452	Sectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions. Atmospheric Environment, 2012, 51, 165-174.	1.9	10
453	Elemental Analysis of Complex Organic Aerosol Using Isotopic Labeling and Unit-Resolution Mass Spectrometry. Analytical Chemistry, 2015, 87, 2741-2747.	3.2	10
454	Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4565-4577.	1.2	10
455	Importance of biogenic volatile organic compounds to acyl peroxy nitrates (APN) production in the southeastern US during SOAS 2013. Atmospheric Chemistry and Physics, 2019, 19, 1867-1880.	1.9	10
456	Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer. ACS Earth and Space Chemistry, 2020, 4, 676-689.	1.2	10
457	Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	10
458	Reconciling Assumptions in Bottomâ€Up and Topâ€Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREXâ€AQ. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	10
459	A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG). Atmospheric Measurement Techniques, 2016, 9, 5637-5653.	1.2	9
460	Nitrate radical generation via continuous generation of dinitrogen pentoxide in a laminar flow reactor coupled to an oxidation flow reactor. Atmospheric Measurement Techniques, 2020, 13, 2397-2411.	1.2	9
461	Exploration of oxidative chemistry and secondary organic aerosol formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with GECKO-A. Atmospheric Chemistry and Physics, 2020, 20, 5995-6014.	1.9	9
462	Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants. Atmospheric Chemistry and Physics, 2022, 22, 4253-4275.	1.9	9
463	Los Angeles Basin airborne organic aerosol characterization during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,453.	1.2	8
464	Effect of Vaporizer Temperature on Ambient Non-Refractory Submicron Aerosol Composition and Mass Spectra Measured by the Aerosol Mass Spectrometer. Aerosol Science and Technology, 2015, 49, 485-494.	1.5	8
465	Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. Environmental Science & Environmental Sc	4.6	8
466	Comparison of Airborne Reactive Nitrogen Measurements During WINTER. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10483-10502.	1.2	7
467	Sources of Gas-Phase Species in an Art Museum from Comprehensive Real-Time Measurements. ACS Earth and Space Chemistry, 2021, 5, 2252-2267.	1.2	7
468	Determining Activity Coefficients of SOA from Isothermal Evaporation in a Laboratory Chamber. Environmental Science and Technology Letters, 2021, 8, 212-217.	3.9	7

#	Article	IF	CITATIONS
469	Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloudâ€Forming Particles. Geophysical Research Letters, 2021, 48, .	1.5	7
470	Transmission of SARS-CoV-2: still up in the air – Authors' reply. Lancet, The, 2022, 399, 519-520.	6.3	7
471	Laser Ablation-Aerosol Mass Spectrometry-Chemical Ionization Mass Spectrometry for Ambient Surface Imaging. Analytical Chemistry, 2018, 90, 4046-4053.	3.2	6
472	Impacts of sectoral, regional, species, and day-specific emissions on air pollution and public health in Washington, DC. Elementa, 2021, 9, .	1.1	6
473	Relative Humidity Predicts Day-to-Day Variations in COVID-19 Cases in the City of Buenos Aires. Environmental Science & Enviro	4.6	6
474	Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples. Atmospheric Measurement Techniques, 2020, 13, 6193-6213.	1.2	6
475	Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?. Atmospheric Chemistry and Physics, 2022, 22, 3713-3742.	1.9	6
476	Systematic way to understand and classify the sharedâ€room airborne transmission risk of indoor spaces. Indoor Air, 2022, 32, .	2.0	6
477	Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmospheric Chemistry and Physics, 2021, 21, 11113-11132.	1.9	5
478	Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol. Atmospheric Chemistry and Physics, 2022, 22, 805-821.	1.9	5
479	Teaching Instrumental Analysis during the Pandemic: Application of Handheld CO ₂ Monitors to Explore COVID-19 Transmission Risks. Journal of Chemical Education, 2022, 99, 1794-1801.	1.1	5
480	Corrigendum to "An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)" published in Atmos. Chem. Phys., 10, 11415–11438, 2010. Atmospheric Chemistry and Physics, 2010, 10, 11565-11565.	1.9	4
481	Thermal desorption metastable atom bombardment ionization aerosol mass spectrometer. International Journal of Mass Spectrometry, 2011, 303, 164-172.	0.7	4
482	Development and application of a low-cost vaporizer for rapid, quantitative, in situ addition of organic gases and particles to an environmental chamber. Aerosol Science and Technology, 2020, 54, 1567-1578.	1.5	4
483	Evolution of OH reactivity in NO-free volatile organic compound photooxidation investigated by the fully explicit GECKO-A model. Atmospheric Chemistry and Physics, 2021, 21, 14649-14669.	1.9	4
484	Correction to "Quantitative sampling using an Aerodyne aerosol mass spectrometer: 2. Measurements of fine particulate chemical composition in two U.K. cities,― Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	3
485	Concluding remarks: Faraday Discussion on chemistry in the urban atmosphere. Faraday Discussions, 2016, 189, 661-667.	1.6	3
486	The World Health Network: a global citizens' initiative. Lancet, The, 2021, 398, 1567-1568.	6.3	3

#	Article	IF	Citations
487	Quantifying transmission risk of SARS-CoV-2 in different situations. BMJ, The, 2022, 376, o106.	3.0	3
488	Kinetics of the reactive uptake of ozone on oleic acid aerosols. Journal of Aerosol Science, 2000, 31, 1036-1037.	1.8	1
489	Corrigendum to "In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC&Itsup>4&It/sup>RS: observations of a modest aerosol enhancement aloft" published in Atmos. Chem. Phys., 15, 7085–7102. 2015. Atmospheric Chemistry and Physics. 2015. 15. 8455-8455.	1.9	1
490	Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.	1.6	1
491	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514.	1.6	1
492	<title>Remote sensing of NO and NO<formula><inf><roman>2</roman></iinf></formula> emissions from heavy-duty diesel trucks using tunable diode lasers</title> ., 1999, 3758, 180.		0
493	The importance of organic aerosol to CCN concentrations and characteristics at a forested site in Colorado. , 2013, , .		0
494	Ultrafast electronic structures and dynamics of CdSe nanocrystals revealed by gas phase time-resolved photoelectron spectroscopy. , 2014, , .		0
495	Numerical modelling strategies for the urban atmosphere: general discussion. Faraday Discussions, 2016, 189, 635-660.	1.6	0
496	Ultrafast Dynamics of Individual, Isolated Nanoparticles and Nanoplasmas in Intense Laser Fields. , 2014, , .		0
497	Novel Pathways to Form Secondary Organic Aerosols: Glyoxal SOA in WRF/Chem. Springer Proceedings in Complexity, 2014, , 149-154.	0.2	0
498	Femtosecond Dynamics of Solvated Electrons in Nanodroplets Probed with Extreme Ultraviolet Beams. , 2016, , .		0